Skip to main content
Log in

Crystallisation process of Bi5Ti3FeO15 multiferroic nanoparticles synthesised by a sol–gel method

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Phase-pure Aurivillius Bi5Ti3FeO15 nanoparticles were successfully prepared using a sol–gel method. Behaviours of crystallisation were characterised by XRD, DTA, FT-IR, Raman spectra and HRTEM. Mass spectrum was used to monitor the combustion products of all organics in the xerogel during calcination. An intermediate product, Bi2O2CO3, which blocks the generation of the pyrochlore phases, was confirmed by XRD patterns and IR spectra. Calculated by XRD data using the Debye–Scherrer method, the average grain size in powders calcinated at 500 °C was 17.7 nm and grew to 80.5 nm at 850 °C. The local symmetry connected to FeO6 octahedral was broken. The XRD refinement and XPS analyses inferred the valence increase of ferric ions. The maximum magnetisation of nanoparticles prepared at 850 °C was 4.2 emu/g. The field cooling (FC) and zero field cooling (ZFC) tests showed a wide range of the blocking temperature (T B) around 8–45 K answering for the lack of hump corresponding to the transition from superparamagnetism to blocking state.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schmid H (1994) Ferroelectrics 162:317–338

    Article  Google Scholar 

  2. Wang KF, Liu J-M, Ren ZF (2009) Adv Phys 58:321

    Article  Google Scholar 

  3. Scott JF, Blinc R (2011) J Phys Condens Matter 23:113202

    Article  Google Scholar 

  4. Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759–765

    Article  Google Scholar 

  5. Cheong S-W, Mostovoy M (2007) Nat Mater 6:13–20

    Article  Google Scholar 

  6. Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Science 303:661–663

    Article  Google Scholar 

  7. Nan C-W, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) J Appl Phys 103:31101

    Article  Google Scholar 

  8. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Science 299:1719–1722

    Article  Google Scholar 

  9. de Araujo CA-P, Cuchiaro JD, McMillan LD, Scott MC, Scott JF (1995) Nature 374:627–629

    Article  Google Scholar 

  10. Dobal PS, Katiyar RS (2002) J Raman Spectrosc 33:405–423

    Article  Google Scholar 

  11. Ke H, Zhou Y, Jia DC, Wang W, Xu XQ, Ye F (2005) J Solgel Sci Technol 34:131–136

    Article  Google Scholar 

  12. Deepak N, Carolan P, Keeney L, Pemble ME, Whatmore RW (2015) J Mater Chem C 3:5727–5732

    Article  Google Scholar 

  13. Birenbaum AY, Ederer C (2014) Phys Rev B Condens Matter Mater Phys 90:214109

    Article  Google Scholar 

  14. Mao X, Wang W, Sun H, Lu Y, Chen X (2011) J Mater Sci 47:2960–2965

    Article  Google Scholar 

  15. Dong XW, Wang KF, Wan JG, Zhu JS, Liu JM (2008) J Appl Phys 103:94101

    Article  Google Scholar 

  16. Amouri A, Abdelmoula N, Khemakhem H (2015) Ceram Int 41:10425–10433

    Article  Google Scholar 

  17. Xiao J, Zhang H, Xue Y, Lu Z, Chen X, Su P, Yang F, Zeng X (2015) Ceram Int 41:1087–1092

    Article  Google Scholar 

  18. Keeney L, Maity T, Schmidt M, Amann A, Deepak N, Petkov N, Roy S, Pemble ME, Whatmore RW, Johnson D (2013) J Am Ceram Soc 96:2339–2357

    Article  Google Scholar 

  19. Keeney L, Groh C, Kulkarni S, Roy S, Pemble ME, Whatmore RW (2012) J Appl Phys 112:0–9

    Google Scholar 

  20. Jung S, Hwang S, Sung Y (2003) J Mater Res 18:1745–1748

    Article  Google Scholar 

  21. Villegas M, Jardiel T, Caballero AC, Fernndez JF (2004) J Electroceramics 13:543–548

    Article  Google Scholar 

  22. Tillotson T, Gash A, Simpson R, Hrubesh L, Satcher J, Poco J (2001) J Non Cryst Solids 285:338–345

    Article  Google Scholar 

  23. Xu JH, Ke H, Jia DC, Wang W, Zhou Y (2009) J Alloys Compd 472:473–477

    Article  Google Scholar 

  24. García-Guaderrama M, Fuentes L, Montero-Cabrera ME, Márquez-Lucero A, Villafuerte-Castrejón ME (2005) Integr Ferroelectr 71:233–239

    Article  Google Scholar 

  25. Jang JS, Yoon SS, Borse PH, Lim KT, Hong TE, Jeong ED, Jung OS, Shim YB, Kim HG (2009) J Ceram Soc Jpn 117:1268–1272

    Article  Google Scholar 

  26. Jartych E, Pikula T, Mazurek M, Franus W, Lisinska-Czekaj A, Czekaj D, Oleszak D, Surowiec Z, Aksenczuk A, Calka A (2016) Arch Metall Mater 61:869–874

    Article  Google Scholar 

  27. Ding Y, Liu JS, Wang YN (2000) Appl Phys Lett 76:103–105

    Article  Google Scholar 

  28. Su D, Zhu JS, Wang YN, Xu QY, Liu JS (2003) J Appl Phys 93:4784

    Article  Google Scholar 

  29. Toby BH (2001) J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  30. ACLAVon Dreele (2004) Los Alamos National Laboratory Report. LAUR, p 86

  31. Ko TY, Jun CH, Lee JS (1999) The Korean J Ceram 5(4):341–347

    Google Scholar 

  32. Ke H, Wang W, Chen L, Xu J, Jia D, Lu Z, Zhou Y (2010) J. Solgel Sci Technol 53:135–140

    Article  Google Scholar 

  33. Zhang H, Ke H, Wang W, Jia D, Zhou Y (2016) J Am Ceram Soc 99:2334–2340

    Article  Google Scholar 

  34. Hou J, Kumar RV, Qu Y, Krsmanovic D (2009) J Nanopart Res 12:563–571

    Article  Google Scholar 

  35. Ti R, Lu X, He J, Huang F, Wu H, Mei F, Zhou M, Li Y, Xu T, Zhu J (2015) J Mater Chem C 3:11868–11873

    Article  Google Scholar 

  36. Kooriyattil S, Pavunny SP, Barrionuevo D, Katiyar RS (2014) J Appl Phys 116:0–6

    Article  Google Scholar 

  37. Graves PR, Hua G, Myhra S, Thompson JG (1995) J Solid State Chem 114:112–122

    Article  Google Scholar 

  38. Bokolia R, Thakur OP, Rai VK, Sharma SK, Sreenivas K (2015) Ceram Int 41:6055–6066

    Article  Google Scholar 

  39. Jiang PP, Zhang XL, Chang P, Hu ZG, Bai W, Li YW, Chu JH (2014) J Appl Phys 115:144101–144103

    Article  Google Scholar 

  40. Zheng HW, Liu SJ, Yin GS, Wang WC, Diao CL, Gu YZ, Zhang WF (2011) J Solgel Sci Technol 59:290–296

    Article  Google Scholar 

  41. Nemanich RJ, Solin SA, Martin RichardM (1981) Phys Rev B 23:6348–6356

    Article  Google Scholar 

  42. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257:2717–2730

    Article  Google Scholar 

  43. Uhlig I, Szargan R, Nesbitt HW, Laajalehto K (2001) Appl Surf Sci 179:222–229

    Article  Google Scholar 

  44. Xuan SH, Wang YXJ, Yu JC, Leung KCF (2009) Chem Mater 21:5079–5087

    Article  Google Scholar 

  45. Gittleman JI, Abeles B, Bozowski S (1974) Phys Rev B 9:3891–3897

    Article  Google Scholar 

  46. Barra A-L, Debrunner P, Gatteschi D, Schulz CE, Sessoli R (1996) Europhys Lett 35:133–138

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 51472063, 51772065 and 51621091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ke.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ke, H., Ying, P. et al. Crystallisation process of Bi5Ti3FeO15 multiferroic nanoparticles synthesised by a sol–gel method. J Sol-Gel Sci Technol 85, 132–139 (2018). https://doi.org/10.1007/s10971-017-4530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4530-9

Keywords

Navigation