Skip to main content
Log in

Surface-deposited nanofibrous TiO2 for photocatalytic degradation of organic pollutants

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Photocatalysis is considered as an environment-friendly process able to decompose organic pollutants and increasingly applied to water and air purification. Photocatalysts having the morphology of a fibrous layer are attractive candidates for practical applications due to their high structural dimensionality and improved photocatalytic performance. This paper describes the production and characterization of supported TiO2 nanofibre layers, produced by electrospinning process and deposited on a glass plate via solvent evaporation. The obtained structures were characterized by X-ray diffraction, scanning and transmittance electron microscopies, and ellipsometry. Depending on calcination temperature, fibres contained anatase or anatase and rutile crystal phases of TiO2. The supported nanofibres formed a compact but fenestrate layer. The catalytic activity was determined by the decomposition of methylene blue and oxalic acid under UV light. The nanofibre layer proved as a competitive catalyst media based on structural properties and the degradation efficiency of several organic pollutants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Djurisic AB, Leung YH, Ng AMC (2014) Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater Horizons 1:400–410

  2. Gratzel M (2001) Sol-Gel processed TiO 2 films for photovoltaic applications. J Sol–Gel Sci Technol 22:7–13

    Article  Google Scholar 

  3. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  Google Scholar 

  4. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9:1–12

    Article  Google Scholar 

  5. Sreekantan S, Zaki SM, Lai CW, Tzu TW (2014) Copper-incorporated titania nanotubes for effective lead ion removal. Mater Sci Semicond Process 26:620–631

    Article  Google Scholar 

  6. Bianchi CL, Pirola C, Galli F, Cerrato G, Morandi S, Capucci V (2015) Pigmentary TiO2: a challenge for its use as photocatalyst in NOx air purification. Chem Eng J 261:76–82

    Article  Google Scholar 

  7. Prahsarn C, Klinsukhon W, Roungpaisan N (2011) Electrospinning of PAN/DMF/H2O containing TiO2 and photocatalytic activity of their webs. Mater Lett 65:2498–2501

    Article  Google Scholar 

  8. Hong Y, Li D, Zheng J, Zou G (2006) Sol–gel growth of titania from electrospun polyacrylonitrile nanofibres. Nanotechnology 17:1986–1993

    Article  Google Scholar 

  9. Abbasi A, Jahanbin J (2016) N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. Environ Sci Nano 3:1153–1164

    Article  Google Scholar 

  10. Ding Y, Zhang P, Long Z, Jiang Y, Xu F, Lei J (2008) Fabrication and photocatalytic property of TiO2 nanofibers. J Sol–Gel Sci Technol 46:176–179

    Article  Google Scholar 

  11. Jo WK, Kang HJ (2013) Polyacrylonitrile-TiO2 fibers for control of gaseous aromatic compounds. Ind Eng Chem Res 52:4475–4483

    Article  Google Scholar 

  12. Ochiai T, Fujishima A (2012) Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J Photochem Photobiol C Photochem Rev 13:247–262

    Article  Google Scholar 

  13. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C Photochem Rev 15:1–20

    Article  Google Scholar 

  14. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J Phys Chem B 107:4545–4549

    Article  Google Scholar 

  15. Nakata K, Fujishima A (2012) TiO2 photocatalysis: Design and applications. J Photochem Photobiol C Photochem Rev 13:169–189

    Article  Google Scholar 

  16. Rachel A, Subrahmanyam M, Boule P (2002) Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl Catal B Environ 37:301–308

    Article  Google Scholar 

  17. Mehrpouya F, Tavanai H, Morshed M, Ghiaci M (2012) The formation of titanium dioxide crystallite nanoparticles during activation of PAN nanofibers containing titanium isopropoxide. J Nanoparticle Res 14:1074

  18. Pant HR, Bajgai MP, Nam KT, Seo YA, Pandeya DR, Hong ST, Kim HY (2011) Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: a multifunctional nanocomposite textile material. J Hazard Mater 185:124–130

    Article  Google Scholar 

  19. Choi KJ, Hong SW (2012) Preparation of TiO2 nanofibers immobilized on quartz substrate by electrospinning for photocatalytic degradation of ranitidine. Res Chem Intermed 38:1161–1169

    Article  Google Scholar 

  20. Park SJ, Chase GG, Jeong KU, Kim HY (2010) Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol-gel precursor. J Sol–Gel Sci Technol 54:188–194

    Article  Google Scholar 

  21. Wang Y, He Y, Lai Q, Fan M (2014) Review of the progress in preparing nano TiO2: An important environmental engineering material. J Environ Sci 26:2139–2177

    Article  Google Scholar 

  22. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  23. Homaeigohar S, Elbahri M (2014) Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials 7:1017–1045

    Article  Google Scholar 

  24. Nasouri K, Shoushtari AM, Mojtahedi MRM (2015) Evaluation of effective electrospinning parameters controlling polyvinylpyrrolidone nanofibers surface morphology via response surface methodology. Fibers Polym 16:1941–1954

    Article  Google Scholar 

  25. Chen JY, Chen HC, Lin JN, Kuo C (2008) Effects of polymer media on electrospun mesoporous titania nanofibers. Mater Chem Phys 107:480–487

    Article  Google Scholar 

  26. Madhugiri S, Zhou W, Ferraris JP, Balkus KJ (2003) Electrospun mesoporous molecular sieve fibers. Microporous Mesoporous Mater 63:75–84

    Article  Google Scholar 

  27. Chattopadhyay S, Saha J, De G (2014) Electrospun anatase TiO2 nanofibers with ordered mesoporosity. J Mater Chem A 2:19029–19035

    Article  Google Scholar 

  28. Doh SJ, Kim C, Lee SG, Lee SJ, Kim H (2008) Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. J Hazard Mater 154:118–127

    Article  Google Scholar 

  29. K.C. RB, Kim CK, Khil MS, Kim HY, Kim IS (2008) Synthesis of hydroxyapatite crystals using titanium oxide electrospun nanofibers. Mater Sci Eng C 28:70–74

    Article  Google Scholar 

  30. Bermudez VM (2010) Computational study of the adsorption of dimethyl methylphosphonate (DMMP) on the (010) surface of anatase TiO2 with and without faceting. Surf Sci 604:706–712

    Article  Google Scholar 

  31. Dávila-Martínez RE, Cueto LF, Sánchez EM (2006) Electrochemical deposition of silver nanoparticles on TiO2/FTO thin films. Surf Sci 600:3427–3435

    Article  Google Scholar 

  32. Zhang Y, Park M, Kim HY, El-Newehy M, Rhee KY, Park SJ (2015) Effect of TiO2 on photocatalytic activity of polyvinylpyrrolidone fabricated via electrospinning. Compos Part B Eng 80:355–360

    Article  Google Scholar 

  33. Ding B, Kim CK, Kim HY, Se MK, Park SJ (2004) Titanium dioxide nanoribers prepared by using electrospinning method. Fibers Polym 5:105–109

    Article  Google Scholar 

  34. Frontera P, Trocino S, Donato A, Antonucci PL, Lo Faro M, Squadrito G, Neri G (2014) Oxygen-sensing properties of electrospun CNTs/PVAc/TiO2 composites. Electron Mater Lett 10:305–313

    Article  Google Scholar 

  35. Im JS, Kim MIl, Lee YS (2008) Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation. Mater Lett 62:3652–3655

    Article  Google Scholar 

  36. Pant B, Pant HR, Barakat NAM, Park M, Jeon K, Choi Y, Kim HY (2013) Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram Int 39:7029–7035

    Article  Google Scholar 

  37. Pant HR, Pant B, Pokharel P, Kim HJ, Tijing LD, Park CH, Lee DS, Kim HY, Kim CS (2013) Photocatalytic TiO2-RGO/nylon-6 spider-wave-like nano-nets via electrospinning and hydrothermal treatment. J Memb Sci 429:225–234

    Article  Google Scholar 

  38. Matulevicius J, Kliucininkas L, Prasauskas T, Buivydiene D, Martuzevicius D (2016) The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J Aerosol Sci 92:27–37

    Article  Google Scholar 

  39. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874

    Article  Google Scholar 

  40. Mozia S, Heciak A, Morawski AW (2010) Preparation of Fe-modified photocatalysts and their application for generation of useful hydrocarbons during photocatalytic decomposition of acetic acid. J Photochem Photobiol A Chem 216:275–282

    Article  Google Scholar 

  41. Hirano M, Nakahara C, Ota K, Tanaike O, Inagaki M (2003) Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions. J Solid State Chem 170:39–47

    Article  Google Scholar 

  42. Madhugiri S, Sun B, Smirniotis PG, Ferraris JP, Balkus KJ (2004) Electrospun mesoporous titanium dioxide fibers. Microporous Mesoporous Mater 69:77–83

    Article  Google Scholar 

  43. Hu M, Fang M, Tang C, Yang T, Huang Z, Liu Y, Wu X, Min X (2013) The effects of atmosphere and calcined temperature on photocatalytic activity of TiO2 nanofibers prepared by electrospinning. Nanoscale Res Lett 8:548

    Article  Google Scholar 

  44. Jung KY, Park SBin, Ihm SK (2002) Linear relationship between the crystallite size and the photoactivity of non-porous titania ranging from nanometer to micrometer size. Appl Catal A Gen 224:229–237

    Article  Google Scholar 

  45. Kedem S, Schmidt J, Paz Y, Cohen Y (2005) Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles. Langmuir 21:5600–5604

    Article  Google Scholar 

  46. Alonso-Tellez A, Masson R, Robert D, Keller N, Keller V (2012) Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. J Photochem Photobiol A Chem 250:58–65

    Article  Google Scholar 

  47. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  Google Scholar 

  48. Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480

  49. Yamashita Y, Aoki N, Ko F, Miyake H (2008) Carbonization conditions for electrospun nanofibre of polyacylonitrile copolymer. Indian J Fibre Text Res 33:345–353

    Google Scholar 

  50. Mano T, Nishimoto S, Kameshima Y, Miyake M (2015) Water treatment efficacy of various metal oxide semiconductors for photocatalytic ozonation under UV and visible light irradiation. Chem Eng J 264:221–229

    Article  Google Scholar 

  51. Selloni a, Vittadini A, Grätzel M (1998) The adsorption of small molecules on the TiO2 anatase (101) surface by first-principles molecular dynamics. Surf Sci 402–404:219–222

    Article  Google Scholar 

  52. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297

    Article  Google Scholar 

  53. Wang X, Sø L, Su R, Wendt S, Hald P, Mamakhel A, Yang C, Huang Y, Iversen BB, Besenbacher F (2014) The influence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol. J Catal 310:100–108

    Article  Google Scholar 

  54. Tong T, Zhang J, Tian B, Chen F, He D (2008) Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J Hazard Mater 155:572–579

  55. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425

    Article  Google Scholar 

  56. Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. J Photochem Photobiol C Photochem Rev 24:64–82

    Article  Google Scholar 

  57. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241

    Article  Google Scholar 

  58. Labiadh H, Ben T, Balan L, Becheik N, Corbel S, Medjahdi G, Schneider R (2014) Preparation of Cu-doped ZnS QDs/TiO2 nanocomposites with high photocatalytic activity. Applied Catal B, Environ 144:29–35

    Article  Google Scholar 

Download references

Acknowledgements

Partly supported by EnePRO—a company of advanced energy services. The authors are grateful to the group of Assoc. Prof. S. Kegnæs, CSC at Technical University of Denmark, Assoc. Prof. R. Kriukiene at Lithuanian Energy Institute, Assoc. Prof. T. Malinauskas, Department of Organic Chemistry at Kaunas University of Technology, PhD student Justina Gaidukevic, Department of Inorganic Chemistry at Vilnius University, for the help with analysis of material morphologies. Special thanks for M. Tichonovas, Department of Environmental Technology at Kaunas University of Technology for the comprehensive assistance in the development of electrospinning setup, as well as visiting scientists B. Ozdogan and C. Ozgur from Suleyman Demirel University for assistance in laboratory procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruta Sidaraviciute.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidaraviciute, R., Krugly, E., Dabasinskaite, L. et al. Surface-deposited nanofibrous TiO2 for photocatalytic degradation of organic pollutants. J Sol-Gel Sci Technol 84, 306–315 (2017). https://doi.org/10.1007/s10971-017-4505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4505-x

Keywords

Navigation