Skip to main content
Log in

Synthesis and photocatalysis of flaky flower TiO 2 with sphere structure

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The synthesis of nanocrystals with hierarchical structure is a well-known challenge in many fields of science and technology. In the present work, we making use of tetrabutyl titanate as a titanium source, hydrofluoric acid as an additive, successfully prepared flaky flower titanium dioxide (TiO2) with sperical nanostructures by the solvothermal method. Then we calcined some of the samples. It was found that the calcined sample presented higher crystallinity by X-ray diffraction (XRD). A series of scanning electron microscopy (SEM) characterization results indicate that the calcination causes the sheet-like structure of the sample to become larger and thicker. And the exposed specific surface area became larger. The Brunauer–Emmett–Teller N2 gas adsorption–desorption isotherms characterization results also further demonstrate that the calcined samples have a larger specific surface area than the sample before calcined. The photocatalytic activity was evaluated by measuring the degradation rate of methylene blue under UV–vis light irradiation. The results show that anatase TiO2 after calcination exhibit higher photocatalytic activity than the sample before calcination in the degradation of methylene blue under UV–vis light irradiation. It can be attributed to the synergetic effect of the architecture, high crystallinity, large specific surface areas and ostwald ripening.

Graphical abstract

Scheme 1. Schematic illustration of the morphological evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

    Article  Google Scholar 

  2. Zhang HJ, Chen GH, Bahnemann DW (2009) J Mater Chem 19:5089–5121

    Article  Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1–21

    Article  Google Scholar 

  4. Subramanian A, Karki KI, Gnanasekar FP, Eddy B, Rambabu J (2006) Power Sources 159:186–192

    Article  Google Scholar 

  5. Wu NL, Wang SY, Rusakova IA (1999) Science 285:1357–1377

    Google Scholar 

  6. Gratzel M (2001) Nature 414:338–344

    Article  Google Scholar 

  7. Wang R, Cai X, Shen FL (2013) Ceram Int 39:9465–9470

    Article  Google Scholar 

  8. Khan SUM, Al - Shahry M, Ingler Jr. WB (2002) Science 297:2243–2245

    Article  Google Scholar 

  9. Li YX, Lu GX, Li SB (2001) Appl Catal A Gen 214:179

    Article  Google Scholar 

  10. Wang TH, Li YX, Peng SQ, Lu GX, Li SB (2005) Acta Chim Sin 63:797–801

    Google Scholar 

  11. Li YX, Xie CF, Peng SQ, Lu GX, Li SBJ (2008) Mol Catal A Chem 282:117–123

    Article  Google Scholar 

  12. Xu SH, Feng DL, Li DX, Shangguan WF (2008) Chin J Inorg Chem 24:785–790

    Google Scholar 

  13. Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH (2005) Appl Catal A Gen 285:181–189

    Article  Google Scholar 

  14. Yu JG, Yu JC, Leung MKP, Ho WK, Cheng B, Zhao XJ, Zhao JC (2003) J Catal 255(2):309–320

    Google Scholar 

  15. Yun J, Jin D, Lee YS, Kim H (2010) Mater Lett 64:2431–2434

    Article  Google Scholar 

  16. Kim MH, Baik JM, Zhang JP, Larson C, Li YL, Stucky GD, Moskovits M, Wodtke AM (2010) J Phys Chem C 114:10697–10702

    Article  Google Scholar 

  17. Zhang XG, Ge X, Wang C (2009) Cryst Growth Des 9:4301–4307

    Article  Google Scholar 

  18. Allam NK, El - Sayed MA (2010) J Phys Chem C 114:12024–12029

    Article  Google Scholar 

  19. Allam NK, Shankar K, Grimes CA (2008) J Mater Chem 18:2341–2348

    Article  Google Scholar 

  20. Ho JY, Huang MH (2009) J Phys Chem C 113:14159–14164

    Article  Google Scholar 

  21. Wu GS, Wang JP, Thomas DF, Chen AC (2008) Langmuir 24:3503–3509

    Article  Google Scholar 

  22. Ban T, Nakatani T, Uehara Y, Ohya Y (2008) Cryst Growth Des 8:935–940

    Article  Google Scholar 

  23. Hosono E, Fujihara S, Imai H, Honma I, Masaki I, Zhou HS (2007) ACS Nano 1:273–278

    Article  Google Scholar 

  24. Dai SY, Wang KJ, Wu QC (1997) Acta Energiae Solaris Sinica 18(2):228–232

    Google Scholar 

  25. Dai XJ, Luo YS, Zhang WD, Fu SY (2010) Dalton Trans 39:3426–3432

    Article  Google Scholar 

  26. Wang CX, Yin LW, Zhang LY, Qi YX, Lun N, Liu NN (2010) Langmuir 26:12841–12848

    Article  Google Scholar 

  27. Zhuang ZB, Peng Q, Liu JF, Wang X, Li YD (2007) Inorg Chem 46:5179–5187

    Article  Google Scholar 

  28. Xie JS, Wu QS, Zhang D, Ding YP (2009) Cryst Growth Des 9:3889–3897

    Article  Google Scholar 

  29. Zhou YX, Yao HB, Zhang YQ, Gong JY, Liu SJ, Yu SH (2009) Inorg Chem 48:1082–1090

    Article  Google Scholar 

  30. Hu XL, Yu JC, Gong JM (2007) J Phys Chem C 111:11180–11185

    Article  Google Scholar 

  31. Ma C, Moore D, Li J, Wang ZL (2003) Adv Mater 15:228–231

    Article  Google Scholar 

  32. Jiang XC, Wang YL, Herricks T, Xia YN (2004) J Mater Chem 14:695–703

    Article  Google Scholar 

  33. Lee JC, Kim TG, Choi HJ, Sung YM (2007) Cryst Growth Des 7:2588–2593

    Article  Google Scholar 

  34. Bian ZF, Zhu J, Cao FL, Lu YF, Li HX (2009) Chem Commun 25(25):3789–3791

    Article  Google Scholar 

  35. Feng JY, Yin MC, Wang ZQ, Yan SC, Wan LJ, Li ZS, Zou ZG (2010) CrystEngComm 12:3425–3429

    Article  Google Scholar 

  36. Chen JS, Tan YL, Li CM et al. (2010) J Am Chem Soc 132(17):6124–6130

    Article  Google Scholar 

  37. Xiang QJ, Yu JG (2011) Chin J Catal 32(3):525–531

    Article  Google Scholar 

  38. Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Chem Mater 14:3808–3816

    Article  Google Scholar 

  39. Tian GH, Chen YJ, Zhou W, Pan K, Tian CG, Huang XR, Fu HG (2011) Crystengcomm 13:2994–3000

    Article  Google Scholar 

  40. Ren HT, Yang Q (2017) Appl Surf Sci 396:530–538

Download references

Acknowledgements

We acknowledge the financial supports of the National Natural Science Foundation (No. 51402157, 51602164) and project supported by the outstanding scientific research innovation team plan for university of Shandong province, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixia Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, H., Lv, S. et al. Synthesis and photocatalysis of flaky flower TiO 2 with sphere structure. J Sol-Gel Sci Technol 84, 283–289 (2017). https://doi.org/10.1007/s10971-017-4493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4493-x

Keywords

Navigation