Skip to main content
Log in

Synthesis and characterization of composite materials “aerogel-MWCNT”

  • Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Composite materials “aerogel—multi-walled carbon nanotubes” were prepared and characteristics of these materials were investigated. Multi-walled carbon nanotubes were embedded into silica and alginate aerogels at stage of sol. Effects of the multi-walled carbon nanotubes embedding on porosity, specific surface area and pore size distribution were analyzed. Multi-walled carbon nanotubes concentration ranged from 0 to 4.5 wt% for silica aerogel and from 0 to 30 wt% for alginate aerogel. It was observed that multi-walled carbon nanotubes occupy pores with diameter of 30–40 nm that correspond to the carbon nanotube diameter. BET analysis using nitrogen adsorption revealed the specific surface areas within 737–780 m2/g range for the composite “silica aerogel—multi-walled carbon nanotubes” and 317–459 m2/g range for the composite “alginate aerogel—multi-walled carbon nanotubes”.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustainable Energy Rev 58:1189–1206

    Article  Google Scholar 

  2. Yang X et al. (2015) Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application. Mater Chem Phys 149:657–662

    Article  Google Scholar 

  3. Lee EJ, Lee YJ, Kim JK, Lee M, Yi J, Yoon JR et al. (2015) Oxygen group-containing activated carbon aerogel as an electrode material for supercapacitor. Mater Res Bull 70:209–214

    Article  Google Scholar 

  4. Li C, Yang X, Zhang G (2015) Mesopore-dominant activated carbon aerogels with high surface area for electric double-layer capacitor application. Mater Lett 161:538–541

    Article  Google Scholar 

  5. Yang X, Wei C, Zhang G (2016) Activated carbon aerogels with developed mesoporosity as high-rate anodes in lithium-ion batteries. J Mater Sci 51(11):5565–5571

    Article  Google Scholar 

  6. Lee YJ, Park HW, Kim GP, Yi J, Song IK (2013) Supercapacitive electrochemical performance of graphene-containing carbon aerogel prepared using polyethyleneimine-modified graphene oxide. Curr Appl Phys 13(5):945–949

    Article  Google Scholar 

  7. Yang X et al. (2014) Ammonia-assisted semicarbonization: a simple method to introduce micropores without damaging a 3D mesoporous carbon nanonetwork structure. Langmuir 30(30):9183–9189

    Article  Google Scholar 

  8. Kalpana D, Omkumar KS, Kumar SS, Renganathan NG (2006) A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim Acta 52(3):1309–1315

    Article  Google Scholar 

  9. Wei TY, Chen CH, Chang KH, Lu SY, Hu CC (2009) Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem Mater 21(14):3228–3233

    Article  Google Scholar 

  10. Hrubesh LW, Pekala RW (1994) Thermal properties of organic and inorganic aerogels. J Mater Res 9(03):731–738

    Article  Google Scholar 

  11. Hegde ND, Hirashima H, Rao AV (2007) Two step sol-gel processing of TEOS based hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor. J Porous Mater 14(2):165–171

    Article  Google Scholar 

  12. Lu X, Arduini-Schuster MC (1992) Thermal conductivity of monolithic organic aerogels. Science 255(5047):971

    Article  Google Scholar 

  13. Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photon 6(3):162–169

    Article  Google Scholar 

  14. Chiang YC, Cheng WY, Lu SY (2012) Titania aerogels as a superior mesoporous structure for photoanodes of dye-sensitized solar cells. Int J Electrochem Sci 7:6910–6919

    Google Scholar 

  15. Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4(3):656–667

    Article  Google Scholar 

  16. Baumann TF, Worsley MA, Han TYJ, Satcher JH (2008) High surface area carbon aerogel monoliths with hierarchical porosity. J Non-Crystalline Solids 354(29):3513–3515

    Article  Google Scholar 

  17. Cui S, Cheng W, Shen X, Fan M, Russell AT, Wu Z, Yi X (2011) Mesoporous amine-modified SiO 2 aerogel: a potential CO 2 sorbent. Energy Environ Sci 4(6):2070–2074

    Article  Google Scholar 

  18. Saquing CD, Cheng TT, Aindow M, Erkey C (2004) Preparation of platinum/carbon aerogel nanocomposites using a supercritical deposition method. J Phys Chem B 108(23):7716–7722

    Article  Google Scholar 

  19. Ulker Z, Sanli D, & Erkey C (2014) Applications of aerogels and their composites in energy-related technologies. Supercritical Fluid Technol Energy Environ Appl 157–180

  20. Goldberg G, Dodiuk H, Kenig S, Cohen R, Tenne R (2014) The effect of tungsten disulfide nanotubes on the properties of silicone adhesives. Int J Adhesion Adhesives 55:77–81

    Article  Google Scholar 

  21. Sedova A, Bar G, Goldbart O, Ron R, Achrai B, Kaplan-Ashiri I et al. (2015) Reinforcing silica aerogels with tungsten disulfide nanotubes. J Supercritical Fluids 106:9–15

    Article  Google Scholar 

  22. Hamilton, CE et al. (2010) “Carbon nanomaterials in silica aerogel matrices.” MRS Proceedings Vol. 1258. Los Alamos National Laboratory, Los Alamos NM, USA: Cambridge University Press

  23. Song X-Y et al. (1995) Carbon nanostructures in silica aerogel composites. J Mater Res 10(02):251–254

    Article  Google Scholar 

  24. Zhang Y et al. (2006) Reinforcement of silica with single-walled carbon nanotubes through covalent functionalization. J Mater Chem 16(47):4592–4597

    Article  Google Scholar 

  25. Jung I-k et al. (2012) Silica xerogel films hybridized with carbon nanotubes by single step sol–gel processing. J Non-Cryst Solids 358(3):550–556

    Article  Google Scholar 

  26. Chernov AI et al. (2016) Optical properties of silica aerogels with embedded multiwalled carbon nanotubes. Phys Status Solidi B 253(12):2440–2445

    Article  Google Scholar 

  27. Huang J et al. (2016) Hierarchical porous MWCNTs-silica aerogel synthesis for high-efficiency oily water treatment. J Environ Chem Eng 4(3):3274–3282

    Article  Google Scholar 

  28. Purohit R, Purohit K, Rana S, Rana RS, Patel V (2014) Carbon nanotubes and their growth methods. Procedia Mater Sci 6:716–728

    Article  Google Scholar 

  29. Hoffmann H, Meyer M, Zeitler I (2006) Control of morphology inside the mesoporous gelstructure in silica-gels. Colloids Surf A 291(1):117–127

    Article  Google Scholar 

  30. Chan Z et al. (2007) Effect of doping levels on the pore structure of carbon nanotube/silica xerogel composites. Mater Lett 61(3):644–647

    Article  Google Scholar 

  31. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87(9–10):1051–1069

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the Ministry of Higher Education and Science of The Russian Federation within the framework of project component of the State Assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Menshutina.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menshutina, N., Ivanov, S., Tsygankov, P. et al. Synthesis and characterization of composite materials “aerogel-MWCNT”. J Sol-Gel Sci Technol 84, 382–390 (2017). https://doi.org/10.1007/s10971-017-4474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4474-0

Keywords

Navigation