Skip to main content
Log in

Titania–silica hybrid films derived by a sol–gel process for organic field effect transistors

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Titania–silica hybrid films with a thickness of 300 nm are fabricated by combining a sol–gel method with a spin-coating process from the acid-catalyzed organically modified silane solution of γ-glycidoxypropyltrimethoxysilane, methyltriethoxysilane and tetrapropylorthotitanate. The dielectric constants of the titania–silica hybrid films can be easily controlled by adjusting titanium content. Effects of titanium content and heat treatment temperature on the leakage current and surface roughness of the as-fabricated films are also optimized, thus, the hybrid film with smooth surface (R q < 0.3 nm), high dielectric constant (k = 59.44) and low leakage current density (<1 nA cm−2 at 5 V) is obtained and then used as the dielectric layer for the organic field effect transistors. Results indicate that the electrical properties of the organic field effect transistor fabricated by the titania–silica hybrid film as dielectric layer show an obvious improvement as compared with those of the organic field effect transistor fabricated by the thermally grown SiO2 as dielectric layer, especially, in the improvement of the operating voltage (−2 V), field effect mobility (0.53 cm2 V−1 s−1) and sub-threshold swing (~130 mV/dec). It can be concluded that the titania–silica hybrid film shows a potential for the dielectric layer of the organic field effect transistors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sekitani T, Zschieschang U, Klauk U, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9:1015–1022. doi:10.1038/NMAT2896

    Article  Google Scholar 

  2. Abe Y, Dai T, Manaka T, Iwamoto M (2014) Study of carrier transport in flexible organic field-effect transistors: analysis of bending effect and microscopic observation using electric-field-induced optical second-harmonic generation. Thin Solid Films 554:166–169. doi:10.1016/j.tsf.2013.05.160

    Article  Google Scholar 

  3. Baeg KJ, Khim D, Kim J, Han H (2012) Controlled charge transport by polymer blend dielectrics in topgate organic field-effect transistors for low-voltage-operating complementary circuts. ACS Appl Mater Interfaces 4:6176–6184. doi:10.1021/AM301793m

    Article  Google Scholar 

  4. Gelinck G, Heremans P, Nomoto K, Anthopoulos TD (2010) Organic transistors in optical displays and microelectronic applications. Adv Mater 22:3778–3798. doi:10.1002/adma.200903559

    Article  Google Scholar 

  5. Kim YJ, Lee HS, Noh JS (2016) Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate. Thin Solid Films 603:160–164. doi:10.1016/j.tsf.2016.02.012

    Article  Google Scholar 

  6. Han S, Zhuang X, Shi W, Yang X, Li L (2016) Poly(3-hexylthiophene)/polystyrene (P3HT/PS) blends based organic field-effect transistor ammonia gas sensor. Sens Actuators B Chem 225:10–15. doi:10.1016/j.snb.2015.11.005

    Article  Google Scholar 

  7. Wang Y-F, Tsai M-R, Lin Y-S, Wu F-C, Lin C-Y (2015) High-response organic thin-film memory transistors based on dipole-functional polymer electret layers. Org Electron 26:359–364. doi:10.1016/j.orgel.2015.08.006

    Article  Google Scholar 

  8. Facchetti A (2007) Semiconductors for organic transistors. Mater Today 10:28–37. doi:10.1016/s1369-7021(07)70017-2

    Article  Google Scholar 

  9. Yamashita Y (2009) Organic semiconductors for organic field-effect transistors. Sci Technol Adv Mater 10:024313. doi:10.1088/1468-6996/10/2/024313

    Article  Google Scholar 

  10. Oniwa K, Kikuchi H, Shimotani H, Ikeda S, Asao N, Yamamoto Y (2016) 2-Positional pyrene end-capped oligothiophenes for high performance organic field effect transistors. Chem Commun 52:4800–4803. doi:10.1039/c6cc00948d

    Article  Google Scholar 

  11. Wang Y, Zou S, Gao J, Zhang H, Lai G, Yang C (2015) High-performance organic field-effect transistors based on single-crystalline microribbons of a two-dimensional fused heteroarene semiconductor. Chem Commun 51:11961–11963. doi:10.1039/c5cc03305e

    Article  Google Scholar 

  12. Hutchins DO, Acton O, Weidner T, Cernetic N, Baio JE, Castner DG (2012) Solid-state densification of spun-cast self-assembled monolayers for use in ultra-thin hybrid dielectrics. Appl Surf Sci 261:908–915. doi:10.1016/j.apsusc.2012.09.013

    Article  Google Scholar 

  13. Ono S, Häusermann R, Chiba D, Shimamura K, Ono T (2014) High performance organic field-effect transistors with ultra-thin HfO2 gate insulator deposited directly onto the organic semiconductor. Appl Phys Lett 104:013307. doi:10.1063/1.4860998

    Article  Google Scholar 

  14. Majewski LA, Schroeder R, Grell M (2005) One volt organic transistor. Adv Mater 17:192–196. doi:10.1002/adma.200400809

    Article  Google Scholar 

  15. Deman AL, Tardy J (2005) PMMA–Ta2O5 bilayer gate dielectric for low operating voltage organic FETs. Org Electron 6:78–84. doi:10.1016/j.orgel.2005.03.002

    Article  Google Scholar 

  16. Hwang DK, Fuentes-Hernandez C, Kim JB, Potscavage WJ, Kippelen B (2011) Flexible and stable solution-processed organic field-effect transistors. Org Electron 12:1108–1113. doi:10.1016/j.orgel.2011.04.002

    Article  Google Scholar 

  17. Liao M, Ishiwara H, Ohmi SI (2014) Excellent current drivability and environmental stability in room-temperature-fabricated pentacene-based organic field-effect transistors with HfO2 gate insulators. IEEE Trans Electron Devices 61:569–575. doi:10.1109/ted.2013.2292904

    Article  Google Scholar 

  18. Hasan M, Nguyen MC, Kim H, You SW, Jeon YS, Tong DT (2015) High performance solution processed zirconium oxide gate dielectric appropriate for low temperature device application. Thin Solid Films 589:90–94. doi:10.1016/j.tsf.2015.04.035

    Article  Google Scholar 

  19. Su YR, Xie WG, Li Y, Shi Y, Zhao N, Xu JB (2013) A low-temperature, solution-processed high-kdielectric for low-voltage, high-performance organic field-effect transistors (OFETs). J Phys D Appl Phys 46:095105. doi:10.1088/0022-3727/46/9/095105

    Article  Google Scholar 

  20. Su Y, Wang C, Xie W, Xie F, Chen J, Zhao N, Xu J (2011) Low-voltage organic field-effect transistors (OFETs) with solution-processed metal-oxide as gate dielectric. ACS Appl Mater Interfaces 3:4662–4667. doi:10.1021/am201078v

    Article  Google Scholar 

  21. Gedda M, Subbarao NVV, Obaidulla SM, Goswami DK (2013) High carrier mobility of CoPc wires based field-effect transistors using bi-layer gate dielectric. AIP Adv 3:112123. doi:10.1063/1.4834355

    Article  Google Scholar 

  22. Han S, Zhuang X, Shi W, Yang X, Li L, Yu J (2016) Poly(3-hexylthiophene)/polystyrene (P3HT/PS) blends based organic field-effect transistor ammonia gas sensor. Sens Actuators B Chem 225:10–15. doi:10.1016/j.snb.2015.11.005

    Article  Google Scholar 

  23. Bahari A, Shahbazi M (2016) Electrical properties of PVP-SiO2-TMSPM hybrid thin films as ofet gate dielectric. J Electron Mater 45:1201–1209. doi:10.1007/s11664-015-4262-y

    Article  Google Scholar 

  24. Busani T, Devine RAB, Yu X, Seo HW (2006) Electrical and physical properties of room temperature deposited, mixed TiO2∕SiO2 oxides. J Vac Sci Technol 24:369–374. doi:10.1116/1.2172951

    Article  Google Scholar 

  25. Benito N, Palacio C (2014) Mixed Ti–O–Si oxide films formation by oxidation of titanium–silicon interfaces. Appl Surf Sci 301:436–441. doi:10.1016/j.apsusc.2014.02.094

    Article  Google Scholar 

  26. Peng J, Sheng C, Shi J, Li X, Zhang J (2014) High-k titanium–aluminum oxide dielectric films prepared by inorganic–organic hybrid solution. J Solgel Sci Technol 71:458–463. doi:10.1007/s10971-014-3400-y

    Article  Google Scholar 

  27. Hacker CA, Anderson KA, Richter LJ, Richter CA (2005) Comparison of Si-O-C interfacial bonding of alcohols and aldehydes on Si(111) formed from dilute solution with ultraviolet irradiation. Langmuir 21:882–889. doi:10.1021/la048841x

    Article  Google Scholar 

  28. Yu S, Wong TKS, Hu X, Pita K, Ligatchev V (2004) Synthesis and characterization of templating low dielectric constant organosilicate films. J Electrochem Soc 151:F123–F127. doi:10.1149/1.1688800

    Article  Google Scholar 

  29. Que W, Hu X (2003) Influence of titanium content and temperature on optical and mechanical properties of sol-gel derived TiO2/γ-glycidoxypropyltrimethoxysilane and methyltrimethoxysilane hybrid organic-inorganic films. J Phys D Appl Phys 36:908–914

    Article  Google Scholar 

  30. Tan HS, Mathews N, Cahyadi T, Zhu FR, Mhaisalkar SG (2009) The effect of dielectric constant on device mobilities of high-performance, flexible organic field effect transistors. Appl Phys Lett 94:263303. doi:10.1063/1.3168523

    Article  Google Scholar 

  31. Ortiz RP, Facchetti A, Marks TJ (2009) High-k organic, inorganic and hybrid dielectrics for low-voltage organic field-effect transistors. Chem Rev 110:205–239. doi:10.1021/ cr9001275

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Research Fund for the Doctoral Program of Higher Education of China under Grant 20120201130004, the Science and Technology Developing Project of Shaanxi Province under Grant No. 2015KW-001, partially by the National Natural Science Foundation of China Major Research Plan on Nanomanufacturing under Grant No. 91323303, and the 111 Project of China (B14040). The SEM work was done at the International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, P. R. China, and the AFM work was done at the Micro-optoelectronic Systems Laboratories, Xi’an Technology University, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxiu Que.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Que, W., Chen, Z. et al. Titania–silica hybrid films derived by a sol–gel process for organic field effect transistors. J Sol-Gel Sci Technol 83, 666–674 (2017). https://doi.org/10.1007/s10971-017-4459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4459-z

Keywords

Navigation