Skip to main content

Advertisement

Log in

Anti-reflection OTS-treated SiO2 thin films with super-hydrophobic property

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Synthesizing multifunctional films to apply to the glasses for optical and advanced engineering applications, especially for concentrating solar power application, is a severe challenge. Herein, we report an anti-reflection SiO2 thin films with super-hydrophobic property. The SiO2 thin films are successfully synthesized on the soda lime glass by sol-gel spin-coating method, using tetraethylorthosilicate as a precursor and octadecyltrichlorosilane as a modification agent. The properties of films were characterized by fourier transform infrared spectra, field emission scanning electron microscopy, UV–VIS–NIR spectrophotometer and water contact angles apparatus. The results indicate that anti-reflection SiO2 thin films have excellent visible light transmittance ranging from 97.8 to 103.4% with treatment time in tetraethylorthosilicate solution increasing from 1 min to 3 h. Moreover, such film exhibits super-hydrophobic property with water contact angles of 150.6° when treatment time is 3 h, owning to a hierarchical structure of the SiO2 nanoparticles (~50 nm) and microscale dendritic aggregates. Fortunately, anti-reflection octadecyltrichlorosilane-treated SiO2 films with super-hydrophobic property display a promising application in various fields, especially in concentrating solar power for reducing specular reflectance efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lien SY, Wu DS, Yeh WC, Liu JC (2006) Sol Energy Mater Sol Cells 90:2710–2719

    Article  Google Scholar 

  2. Chabas A, Lombardo T, Cachier H, Pertuisot MH, Oikonomou K, Falcone R, Verita M, Geotti-Bianchini F (2008) Build Environ 43:2124–2131

    Article  Google Scholar 

  3. Prado R, Beobide G, Marcaide A, Goikoetxea J, Aranzabe A (2010) Sol Energy Mater Sol Cells 94:1081–1088

    Article  Google Scholar 

  4. Xu X, Vignarooban K, Xu B, Hsu K, Kannan AM (2016) Renew Sustain Energy Rev 53:1106–1131

    Article  Google Scholar 

  5. Carnegie MR, Sherine A, Sivagami D, Sakthivel S (2016) J Sol–gel Sci Technol 78:176–186

    Article  Google Scholar 

  6. Li X, Gao J, Xue L, Han Y (2010) Adv Funct Mater 20:259–265

    Article  Google Scholar 

  7. Yang L, Jiang H, Feng X, Shen Y, Jia L (2016) J Sol–gel Sci Technol 79:520–524

    Article  Google Scholar 

  8. Lei F, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Lei J, Zhu D (2002) Adv Mater 14:1857–1860

    Article  Google Scholar 

  9. Huang Y, Liu W, Luo G (2008) Polym Mater Sci Eng 24:13–16

    Google Scholar 

  10. Duan H, Xiong Z, Wang H, Zhao H, Gao D (2006) Chem Ind Eng 23:81–87

    Google Scholar 

  11. Barthlott W, Neinhuis C (1997) Planta 202:1–8

    Article  Google Scholar 

  12. Koch K, Bohn HF, Barthlott W (2009) Langmuir 24:14116–14120

    Article  Google Scholar 

  13. Ennaceri H, Alami HE, Brik H, Mokssit O, Khaldoun A (2014) Compos Mater Renew Energy Appl 10:1–4

    Google Scholar 

  14. Ebert D, Bhushan B (2012) J Colloid Interface Sci 368:584–591

    Article  Google Scholar 

  15. Nuria G, Esperanza B, Julio G, Pilar T (2007) J Am Chem Soc 129:5052–5060

    Article  Google Scholar 

  16. Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z, Jiang L, Li X (2004) J Am Chem Soc 126:3064–3065

    Article  Google Scholar 

  17. Nicolas M, Guittard F, Geribaldi S (2006) Langmuir 22:3081–3088

    Article  Google Scholar 

  18. Guo M, Diao P, Cai S, Liu Z (2004) Chem J Chin Univ 25:547–549

    Google Scholar 

  19. Li Z, Zhu Y (2003) Appl Surf Sci 211:315–320

    Article  Google Scholar 

  20. Jeong A-Y, Koo S-M, Kim D-P (2000) J Sol–gel Sci Technol 19:483–487

    Article  Google Scholar 

  21. Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) Langmuir 15:4321–4323

    Article  Google Scholar 

  22. Xiu Y, Xiao F, Hess DW, Wong CP (2009) Thin Solid Films 517:1610–1615

    Article  Google Scholar 

  23. Guo Z, Zhou F, Liu W (2006) Acta Chim Sci 64:761–766

    Google Scholar 

  24. Mirji SA (2006) Surf Interface Anal 38:158–165

    Article  Google Scholar 

  25. Rouchon D, Rochat N, Gustavo F, Chabli A, Renault O, Besson P (2002) Surf Interface Anal 34:445–450

    Article  Google Scholar 

  26. Abdelghani A, Hleli S, Cherif K (2002) Mater Lett 56:1064–1068

    Article  Google Scholar 

  27. Mirji SA (2006) Colloids Surf A Physicochem Eng Asp 289:133–140

    Article  Google Scholar 

  28. Cai M, Ho M, Pemberton JE (2000) Langmuir 16:3446–3453

    Article  Google Scholar 

  29. Qasim M, Singh BR, Naqvi AH, Paik P, Das D (2015) Nanotechnology 26:1–14

    Article  Google Scholar 

  30. Zai-lan X, Wu Y, Hao G, Li-yan C, Ai-Ju Z, Jin-zhang G (2008) J Northwest Norm Univ Nat Sci 44:65–69

    Google Scholar 

  31. Angst DL (1991) Langmuir 7:2236–2242

    Article  Google Scholar 

  32. Oh T, Kim JW (2008) International conference on condition monitoring and diagnosis. 2008:276–279. doi:10.1109/CMD.2008.4580280

  33. Jian M, Bingqi L, Wenshen H, Jun Y, Xinxin L (2009) Opt Tech 35:513–516

    Google Scholar 

  34. Walheim S, Schaffer E, Mlynek J, Steiner U (1999) Science 283:520–522

    Article  Google Scholar 

  35. Yang D, Xu Y, Xu W, Wu D, Sun Y, Zhu H (2008) J Mater Chem 18:5557–5562

    Article  Google Scholar 

  36. Zhang X-T, Sato O, Taguchi M, Einaga Y, Murakami T, Fujishima A (2005) Chem Mater 17:696–700

    Article  Google Scholar 

  37. Naganuma T, Kagawa Y (1999) Acta Mater 17:4321–4327

    Article  Google Scholar 

  38. Wang B, Feng J, Gao C (2005) Colloids Surf A Physicochem Eng Asp 259:1–5

    Article  Google Scholar 

  39. Lee JP, Kim HK, Park CR, Park G, Kwak HT, Koo SM, Sung MM (2003) J Phys Chem B 107:8997–9002

    Article  Google Scholar 

  40. Lercel MJ, Craighead HG, Parikh AN, Seshadri K, Allara DL (1996) J Vac Sci Technol A Vac Surf Films 14:1844–1849

    Article  Google Scholar 

  41. Carson G, Granick S (1989) J Appl Polym Sci 37:2767–2772

    Article  Google Scholar 

  42. McGovern ME, Kallury KMR, Thompson M (1994) Langmuir 10:3607–3614

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere thanks for the financial support from the National Natural Science Foundation of China (51372179), the Science and Technology Planning Project of Hubei Province (2014BAA136), the Hubei Province Foreign Science and Technology Project (2016AHB027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, N., Zhang, Y. et al. Anti-reflection OTS-treated SiO2 thin films with super-hydrophobic property. J Sol-Gel Sci Technol 83, 518–526 (2017). https://doi.org/10.1007/s10971-017-4458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4458-0

Keywords

Navigation