Skip to main content
Log in

Preparation of HKUST-1@silica aerogel composite for continuous flow catalysis

  • Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

HKUST-1@silica aerogel composite pellets (HKUST-1@SiO2) were prepared by the coupled sol–gel and water-in-oil emulsion method using supercritical CO2 drying. The structure and morphology of HKUST-1@SiO2 were characterized by X-Ray diffraction, scanning electron microscopy and low-temperature nitrogen adsorption. According to these data, the composite represents physically dispersed micron-sized domains of HKUST-1 in the silica aerogel pellets. It was shown that the HKUST-1@SiO2 pellets can be used as a catalyst for isomerization of styrene oxide to phenyl acetaldehyde in a continuous flow reactor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Corma A, García H, Llabrés i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655. doi:10.1021/cr9003924

    Article  Google Scholar 

  2. Dhakshinamoorthy A, Alvaro M, Garcia H (2012) Commercial metal–organic frameworks as heterogeneous catalysts. Chem Commun 48:11275. doi:10.1039/c2cc34329k

    Article  Google Scholar 

  3. Lee J, Farha OK, Roberts J et al (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450. doi:10.1039/b807080f

    Article  Google Scholar 

  4. Chui SS (1999) A Chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(80-):1148–1150. doi:10.1126/science.283.5405.1148

    Article  Google Scholar 

  5. Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater 73:81–88. doi:10.1016/j.micromeso.2003.12.027

    Article  Google Scholar 

  6. Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Metal-organic frameworks as efficient heterogeneous catalysts for the regioselective ring opening of epoxides. Chem - A Eur J 16:8530–8536. doi:10.1002/chem.201000588

    Article  Google Scholar 

  7. Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Metal organic frameworks as solid acid catalysts for acetalization of aldehydes with methanol. Adv Synth Catal 352:3022–3030. doi:10.1002/adsc.201000537

    Article  Google Scholar 

  8. Alaerts L, Séguin E, Poelman H et al (2006) Probing the lewis acidity and catalytic activity of the metal–organic framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chem - A Eur J 12:7353–7363. doi:10.1002/chem.200600220

    Article  Google Scholar 

  9. Pérez-Mayoral E, Čejka J (2011) [Cu3(BTC)2]: A metal-organic framework catalyst for the friedländer reaction. ChemCatChem 3:157–159. doi:10.1002/cctc.201000201

    Article  Google Scholar 

  10. Sachse A, Ameloot R, Coq B et al (2012) In situ synthesis of Cu–BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis. Chem Commun 48:4749. doi:10.1039/c2cc17190b

    Article  Google Scholar 

  11. Finsy V, Ma L, Alaerts L et al (2009) Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework. Microporous Mesoporous Mater 120:221–227. doi:10.1016/j.micromeso.2008.11.007

    Article  Google Scholar 

  12. Hessel V (2009) Novel process windows - gate to maximizing process intensification via flow chemistry. Chem Eng Technol 32:1655–1681. doi:10.1002/ceat.200900474

    Article  Google Scholar 

  13. Baxendale IR, Brocken L, Mallia CJ (2013) Flow chemistry approaches directed at improving chemical synthesis. Green Process Synth. doi:10.1515/gps-2013-0029

  14. Wiles C, Watts P (2014) Continuous process technology: a tool for sustainable production. Green Chem 16:55–62. doi:10.1039/C3GC41797B

    Article  Google Scholar 

  15. Ameloot R, Liekens A, Alaerts L et al. (2010) Silica-MOF composites as a stationary phase in liquid chromatography. Eur J Inorg Chem 2010:3735–3738. doi:10.1002/ejic.201000494

    Article  Google Scholar 

  16. Ahmed A, Forster M, Clowes R et al. (2013) Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. J Mater Chem A 1:3276. doi:10.1039/c2ta01125e

    Article  Google Scholar 

  17. Tanaka K, Muraoka T, Hirayama D, Ohnish A (2012) Highly efficient chromatographic resolution of sulfoxides using a new homochiral MOF–silica composite. Chem Commun 48:8577. doi:10.1039/c2cc33939k

    Article  Google Scholar 

  18. Aguado S, Canivet J, Farrusseng D (2010) Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chem Commun 46:7999. doi:10.1039/c0cc02045a

    Article  Google Scholar 

  19. O’Neill LD, Zhang H, Bradshaw D (2010) Macro-/microporous MOF composite beads. J Mater Chem 20:5720. doi:10.1039/c0jm00515k

    Article  Google Scholar 

  20. Li L, Yao J, Xiao P et al (2013) One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption. Colloid Polym Sci 291:2711–2717. doi:10.1007/s00396-013-3024-8

    Article  Google Scholar 

  21. Nuzhdin AL, Shalygin AS, Artiukha EA et al (2016) HKUST-1 silica aerogel composites: novel materials for the separation of saturated and unsaturated hydrocarbons by conventional liquid chromatography. RSC Adv 6:62501–62507. doi:10.1039/C6RA06522H

    Article  Google Scholar 

  22. Ulker Z, Erucar I, Keskin S, Erkey C (2013) Novel nanostructured composites of silica aerogels with a metal organic framework. Microporous Mesoporous Mater 170:352–358. doi:10.1016/j.micromeso.2012.11.040

    Article  Google Scholar 

  23. Liu M, Gan L, Pang Y et al. (2008) Synthesis of titania–silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties. Colloids Surf A Physicochem Eng Asp 317:490–495. doi:10.1016/j.colsurfa.2007.11.024

    Article  Google Scholar 

  24. Alnaief M, Smirnova I (2011) In situ production of spherical aerogel microparticles. J Supercrit Fluids 55:1118–1123. doi:10.1016/j.supflu.2010.10.006

    Article  Google Scholar 

  25. Hong SK, Yoon MY, Hwang HJ (2011) Fabrication of spherical silica aerogel granules from water glass by ambient pressure drying. J Am Ceram Soc 94:3198–3201. doi:10.1111/j.1551-2916.2011.04765.x

    Article  Google Scholar 

  26. Yu Y, Zhu M, Liang W et al (2015) Synthesis of silica–titania composite aerogel beads for the removal of Rhodamine B in water. RSC Adv 5:72437–72443. doi:10.1039/C5RA13625C

    Article  Google Scholar 

  27. Thommes M, Kaneko K, Neimark A V., et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. doi:10.1515/pac-2014-1117

  28. Gou M-L, Wang R, Qiao Q et al (2015) Effect of mesoporosity by desilication on acidity and performance of HZSM-5 in the isomerization of styrene oxide to phenylacetaldehyde. Microporous Mesoporous Mater 206:170–176. doi:10.1016/j.micromeso.2014.12.006

    Article  Google Scholar 

  29. Hoang PH, Xuan BN (2015) Selective isomerization of epoxides using magnetically recyclable ZSM-5 zeolite catalyst. RSC Adv 5:78441–78447. doi:10.1039/c5ra16922d

    Article  Google Scholar 

  30. Costa VV, da Silva Rocha KA, Kozhevnikov IV et al. (2010) Isomerization of styrene oxide to phenylacetaldehyde over supported phosphotungstic heteropoly acid. Appl Catal A Gen 383:217–220. doi:10.1016/j.apcata.2010.06.005

    Article  Google Scholar 

  31. González-Pérez AB, Grechkin A, de Lera AR (2017) Rearrangement of vinyl allene oxide geometric isomers to cyclopentenones. Further computational insights with biologically relevant model systems. Org Biomol Chem 15:2846–2855. doi:10.1039/c6ob02791a

    Article  Google Scholar 

  32. Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials 17:81–88. doi:10.1016/j.micromeso.2003.12.027

    Article  Google Scholar 

  33. Chamoumi M, Brunel D, Moreau P, Solofo J (1991) Rearrangement of epoxides using modified zeolites. Stud Surf Sci Catal 59:573–579. doi:10.1016/S0167-2991(08)61167-2

    Article  Google Scholar 

  34. Vannice MA (2005) Kinetics of Catalytic Reactions. Springer, New York, NY

    Book  Google Scholar 

  35. Liang CY, Krimm S (1958) Infrared spectra of high polymers. VI. Polystyrene. J Polym Sci 27:241–254. doi:10.1002/pol.1958.1202711520

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted within the framework of SB RAS Integrated Program of Fundamental Scientific Research No. II.2 (project No. 0303-2015-0009)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton S. Shalygin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalygin, A.S., Nuzhdin, A.L., Bukhtiyarova, G.A. et al. Preparation of HKUST-1@silica aerogel composite for continuous flow catalysis. J Sol-Gel Sci Technol 84, 446–452 (2017). https://doi.org/10.1007/s10971-017-4455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4455-3

Keywords

Navigation