Advertisement

Journal of Sol-Gel Science and Technology

, Volume 84, Issue 3, pp 446–452 | Cite as

Preparation of HKUST-1@silica aerogel composite for continuous flow catalysis

  • Anton S. ShalyginEmail author
  • Alexey L. Nuzhdin
  • Galina A. Bukhtiyarova
  • Oleg N. Martyanov
Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Abstract

HKUST-1@silica aerogel composite pellets (HKUST-1@SiO2) were prepared by the coupled sol–gel and water-in-oil emulsion method using supercritical CO2 drying. The structure and morphology of HKUST-1@SiO2 were characterized by X-Ray diffraction, scanning electron microscopy and low-temperature nitrogen adsorption. According to these data, the composite represents physically dispersed micron-sized domains of HKUST-1 in the silica aerogel pellets. It was shown that the HKUST-1@SiO2 pellets can be used as a catalyst for isomerization of styrene oxide to phenyl acetaldehyde in a continuous flow reactor.

Graphical abstract

Open image in new window

Keywords

Aerogel pellets MOF-aerogel composite HKUST-1 Flow catalysis Emulsion 

Notes

Acknowledgements

This work was conducted within the framework of SB RAS Integrated Program of Fundamental Scientific Research No. II.2 (project No. 0303-2015-0009)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10971_2017_4455_MOESM1_ESM.docx (247 kb)
Supplementary Information

References

  1. 1.
    Corma A, García H, Llabrés i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655. doi: 10.1021/cr9003924 CrossRefGoogle Scholar
  2. 2.
    Dhakshinamoorthy A, Alvaro M, Garcia H (2012) Commercial metal–organic frameworks as heterogeneous catalysts. Chem Commun 48:11275. doi: 10.1039/c2cc34329k CrossRefGoogle Scholar
  3. 3.
    Lee J, Farha OK, Roberts J et al (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450. doi: 10.1039/b807080f CrossRefGoogle Scholar
  4. 4.
    Chui SS (1999) A Chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(80-):1148–1150. doi: 10.1126/science.283.5405.1148 CrossRefGoogle Scholar
  5. 5.
    Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater 73:81–88. doi: 10.1016/j.micromeso.2003.12.027 CrossRefGoogle Scholar
  6. 6.
    Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Metal-organic frameworks as efficient heterogeneous catalysts for the regioselective ring opening of epoxides. Chem - A Eur J 16:8530–8536. doi: 10.1002/chem.201000588 CrossRefGoogle Scholar
  7. 7.
    Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Metal organic frameworks as solid acid catalysts for acetalization of aldehydes with methanol. Adv Synth Catal 352:3022–3030. doi: 10.1002/adsc.201000537 CrossRefGoogle Scholar
  8. 8.
    Alaerts L, Séguin E, Poelman H et al (2006) Probing the lewis acidity and catalytic activity of the metal–organic framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chem - A Eur J 12:7353–7363. doi: 10.1002/chem.200600220 CrossRefGoogle Scholar
  9. 9.
    Pérez-Mayoral E, Čejka J (2011) [Cu3(BTC)2]: A metal-organic framework catalyst for the friedländer reaction. ChemCatChem 3:157–159. doi: 10.1002/cctc.201000201 CrossRefGoogle Scholar
  10. 10.
    Sachse A, Ameloot R, Coq B et al (2012) In situ synthesis of Cu–BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis. Chem Commun 48:4749. doi: 10.1039/c2cc17190b CrossRefGoogle Scholar
  11. 11.
    Finsy V, Ma L, Alaerts L et al (2009) Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework. Microporous Mesoporous Mater 120:221–227. doi: 10.1016/j.micromeso.2008.11.007 CrossRefGoogle Scholar
  12. 12.
    Hessel V (2009) Novel process windows - gate to maximizing process intensification via flow chemistry. Chem Eng Technol 32:1655–1681. doi: 10.1002/ceat.200900474 CrossRefGoogle Scholar
  13. 13.
    Baxendale IR, Brocken L, Mallia CJ (2013) Flow chemistry approaches directed at improving chemical synthesis. Green Process Synth. doi: 10.1515/gps-2013-0029
  14. 14.
    Wiles C, Watts P (2014) Continuous process technology: a tool for sustainable production. Green Chem 16:55–62. doi: 10.1039/C3GC41797B CrossRefGoogle Scholar
  15. 15.
    Ameloot R, Liekens A, Alaerts L et al. (2010) Silica-MOF composites as a stationary phase in liquid chromatography. Eur J Inorg Chem 2010:3735–3738. doi: 10.1002/ejic.201000494 CrossRefGoogle Scholar
  16. 16.
    Ahmed A, Forster M, Clowes R et al. (2013) Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. J Mater Chem A 1:3276. doi: 10.1039/c2ta01125e CrossRefGoogle Scholar
  17. 17.
    Tanaka K, Muraoka T, Hirayama D, Ohnish A (2012) Highly efficient chromatographic resolution of sulfoxides using a new homochiral MOF–silica composite. Chem Commun 48:8577. doi: 10.1039/c2cc33939k CrossRefGoogle Scholar
  18. 18.
    Aguado S, Canivet J, Farrusseng D (2010) Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chem Commun 46:7999. doi: 10.1039/c0cc02045a CrossRefGoogle Scholar
  19. 19.
    O’Neill LD, Zhang H, Bradshaw D (2010) Macro-/microporous MOF composite beads. J Mater Chem 20:5720. doi: 10.1039/c0jm00515k CrossRefGoogle Scholar
  20. 20.
    Li L, Yao J, Xiao P et al (2013) One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption. Colloid Polym Sci 291:2711–2717. doi: 10.1007/s00396-013-3024-8 CrossRefGoogle Scholar
  21. 21.
    Nuzhdin AL, Shalygin AS, Artiukha EA et al (2016) HKUST-1 silica aerogel composites: novel materials for the separation of saturated and unsaturated hydrocarbons by conventional liquid chromatography. RSC Adv 6:62501–62507. doi: 10.1039/C6RA06522H CrossRefGoogle Scholar
  22. 22.
    Ulker Z, Erucar I, Keskin S, Erkey C (2013) Novel nanostructured composites of silica aerogels with a metal organic framework. Microporous Mesoporous Mater 170:352–358. doi: 10.1016/j.micromeso.2012.11.040 CrossRefGoogle Scholar
  23. 23.
    Liu M, Gan L, Pang Y et al. (2008) Synthesis of titania–silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties. Colloids Surf A Physicochem Eng Asp 317:490–495. doi: 10.1016/j.colsurfa.2007.11.024 CrossRefGoogle Scholar
  24. 24.
    Alnaief M, Smirnova I (2011) In situ production of spherical aerogel microparticles. J Supercrit Fluids 55:1118–1123. doi: 10.1016/j.supflu.2010.10.006 CrossRefGoogle Scholar
  25. 25.
    Hong SK, Yoon MY, Hwang HJ (2011) Fabrication of spherical silica aerogel granules from water glass by ambient pressure drying. J Am Ceram Soc 94:3198–3201. doi: 10.1111/j.1551-2916.2011.04765.x CrossRefGoogle Scholar
  26. 26.
    Yu Y, Zhu M, Liang W et al (2015) Synthesis of silica–titania composite aerogel beads for the removal of Rhodamine B in water. RSC Adv 5:72437–72443. doi: 10.1039/C5RA13625C CrossRefGoogle Scholar
  27. 27.
    Thommes M, Kaneko K, Neimark A V., et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. doi: 10.1515/pac-2014-1117
  28. 28.
    Gou M-L, Wang R, Qiao Q et al (2015) Effect of mesoporosity by desilication on acidity and performance of HZSM-5 in the isomerization of styrene oxide to phenylacetaldehyde. Microporous Mesoporous Mater 206:170–176. doi: 10.1016/j.micromeso.2014.12.006 CrossRefGoogle Scholar
  29. 29.
    Hoang PH, Xuan BN (2015) Selective isomerization of epoxides using magnetically recyclable ZSM-5 zeolite catalyst. RSC Adv 5:78441–78447. doi: 10.1039/c5ra16922d CrossRefGoogle Scholar
  30. 30.
    Costa VV, da Silva Rocha KA, Kozhevnikov IV et al. (2010) Isomerization of styrene oxide to phenylacetaldehyde over supported phosphotungstic heteropoly acid. Appl Catal A Gen 383:217–220. doi: 10.1016/j.apcata.2010.06.005 CrossRefGoogle Scholar
  31. 31.
    González-Pérez AB, Grechkin A, de Lera AR (2017) Rearrangement of vinyl allene oxide geometric isomers to cyclopentenones. Further computational insights with biologically relevant model systems. Org Biomol Chem 15:2846–2855. doi: 10.1039/c6ob02791a CrossRefGoogle Scholar
  32. 32.
    Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials 17:81–88. doi: 10.1016/j.micromeso.2003.12.027 CrossRefGoogle Scholar
  33. 33.
    Chamoumi M, Brunel D, Moreau P, Solofo J (1991) Rearrangement of epoxides using modified zeolites. Stud Surf Sci Catal 59:573–579. doi: 10.1016/S0167-2991(08)61167-2 CrossRefGoogle Scholar
  34. 34.
    Vannice MA (2005) Kinetics of Catalytic Reactions. Springer, New York, NYCrossRefGoogle Scholar
  35. 35.
    Liang CY, Krimm S (1958) Infrared spectra of high polymers. VI. Polystyrene. J Polym Sci 27:241–254. doi: 10.1002/pol.1958.1202711520 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Anton S. Shalygin
    • 1
    Email author
  • Alexey L. Nuzhdin
    • 1
  • Galina A. Bukhtiyarova
    • 1
  • Oleg N. Martyanov
    • 1
  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussia

Personalised recommendations