Skip to main content
Log in

Total internal reflection-based optofluidic waveguides fabricated in aerogels

  • Invited Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Liquid-core optofluidic waveguides based on total internal reflection of light were built in water-filled cylindrical microchannels fabricated in hydrophobic silica aerogels. Silica aerogels with densities ranging from 0.15 to 0.39 g/cm3 were produced by aging of alcogels in tetraethylorthosilicate solution for various time periods, followed by supercritical extraction of the solvent from the alcogel network. Subsequently, the resulting hydrophilic aerogel samples were made hydrophobic by hexamethyldisilazane vapor treatment. The synthesized samples retained their low refractive index (below ~1.09) and, hence, they could serve as suitable optical cladding materials for aqueous waveguide cores (refractive index n core = 1.33). Hydrophobic silica aerogel samples produced by the above technique also had low absorption coefficients in the visible part of the spectrum. Fabrication of microchannels in aerogel blocks by manual drilling preserving nanoporous and monolithic structure of aerogels was demonstrated for the first time. Long channels (up to ~7.5 cm) with varying geometries such as straight and inclined L-shaped channels could be fabricated. Multimode optofluidic waveguides prepared by filling the channels in the drilled aerogel monoliths with water yielded high numerical aperture values (~0.8). Efficient guiding of light by total internal reflection in the water-filled channels in aerogels was visually revealed and characterized by monitoring the channel output. The presented technique is expected to open up further possibilities for creating three-dimensional networks of liquid channels in aerogels for optofluidic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photon 1(2):106–114

    Article  Google Scholar 

  2. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101):381–386

    Article  Google Scholar 

  3. Pang L, Chen HM, Freeman LM, Fainman Y (2012) Optofluidic devices and applications in photonics, sensing and imaging. Lab Chip 12(19):3543–3551

    Article  Google Scholar 

  4. Lei L, Wang N, Zhang XM, Tai Q, Tsai DP, Chan HL (2010) Optofluidic planar reactors for photocatalytic water treatment using solar energy. Biomicrofluidics 4(4):43004

    Article  Google Scholar 

  5. Erickson D, Sinton D, Psaltis D (2011) Optofluidics for energy applications. Nat Photon 5(10):583–590

    Article  Google Scholar 

  6. Korampally V, Mukherjee S, Hossain M, Manor R, Yun M, Gangopadhyay K, Polo-Parada L, Gangopadhyay S (2009) Development of a miniaturized liquid core waveguide system with nanoporous dielectric cladding—A potential biosensing platform. IEEE Sens J 9(12):1711–1718

    Article  Google Scholar 

  7. Manor R, Datta A, Ahmad I, Holtz M, Gangopadhyay S, Dallas T (2003) Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF. IEEE Sens J 3(6):687–692

    Article  Google Scholar 

  8. Parks JW, Schmidt H (2016) Flexible optofluidic waveguide platform with multi-dimensional reconfigurability. Sci Rep 6:33008

    Article  Google Scholar 

  9. Cristiano MBC, Christiano JSdM, Eliane MdS, Alexandre B, Jackson SKO, Tilon F, Giancarlo C, Alfredo RV, Carlos HBC (2007) Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre. Meas Sci Technol 18(10):3075

    Article  Google Scholar 

  10. Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat photonic 5(10):591–597

    Article  Google Scholar 

  11. Ozcelik D, Parks JW, Wall TA, Stott MA, Cai H, Parks JW, Hawkins AR, Schmidt H (2015) Optofluidic wavelength division multiplexing for single-virus detection. Proc Natl Acad Sci U S A 112(42):12933–12937

    Article  Google Scholar 

  12. Ellis PS, Gentle BS, Grace MR, McKelvie ID (2009) A versatile total internal reflection photometric detection cell for flow analysis. Talanta 79(3):830–835

    Article  Google Scholar 

  13. Shih-Hao H, Fan-Gang T (2005) Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing. J Micromech Microeng 15(12):2235

    Article  Google Scholar 

  14. Jung JH, Lee KS, Im S, Destgeer G, Ha BH, Park J, Sung HJ (2016) Photosynthesis of cyanobacteria in a miniaturized optofluidic waveguide platform. RSC Adv 6(14):11081–11087

    Article  Google Scholar 

  15. Ramachandran S, Cohen DA, Quist AP, Lal R (2013) High performance, LED powered, waveguide based total internal reflection microscopy. Sci Rep 3:2133

    Article  Google Scholar 

  16. Dallas T, Dasgupta PK (2004) Light at the end of the tunnel: recent analytical applications of liquid-core waveguides. Trends Anal Chem 23(5):385–392

    Article  Google Scholar 

  17. Schelle B, Dreß P, Franke H, Klein KF, Slupek J (1999) Physical characterization of lightguide capillary cells. J Phys D Appl Phys 32(24):3157

    Article  Google Scholar 

  18. Bernini R, Campopiano S, Zeni L, Sarro PM (2004) ARROW optical waveguides based sensors. Sens Actuators B Chem 100(1–2):143–146

    Article  Google Scholar 

  19. Hawkins AR, Schmidt H (2007) Optofluidic waveguides: II. Fabrication and structures. Microfluid Nanofluidics 4(1–2):17–32

    Article  Google Scholar 

  20. Özbakır Y, Jonas A, Kiraz A, Erkey C (2017) Aerogels for optofluidic waveguides. Micromachines 8(4):98

    Article  Google Scholar 

  21. Schmidt H, Hawkins AR (2008) Optofluidic waveguides: I. Concepts and implementations. Microfluid Nanofluidics 4(1):3–16

    Article  Google Scholar 

  22. Hawkins AR, Schmidt H (2008) Optofluidic waveguides: II. Fabrication and structures. Microfluid Nanofluidics 4(1):17–32

    Article  Google Scholar 

  23. Yalizay B, Morova Y, Dincer K, Ozbakir Y, Jonas A, Erkey C, Kiraz A, Akturk S (2015) Versatile liquid-core optofluidic waveguides fabricated in hydrophobic silica aerogels by femtosecond-laser ablation. Opt Mater 47:478–483

    Article  Google Scholar 

  24. Datta A, In-Yong E, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta PK (2003) Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3(6):788–795

    Article  Google Scholar 

  25. Wu CW, Gong GC (2008) Fabrication of PDMS-based nitrite sensors using Teflon AF coating microchannels. IEEE Sens J 8(5):465–469. doi:10.1109/JSEN.2008.918201

    Article  Google Scholar 

  26. Cho SH, Godin J, Lo YH (2009) Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels. IEEE Photon Technol Lett 21(15):1057–1059

    Article  Google Scholar 

  27. Datta A, Eom IY, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin F, Dasgupta PK (2003) Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3(6):788–795

    Article  Google Scholar 

  28. Hüsing N, Schubert U (1998) Aerogels—Airy Materials: chemistry, structure, and properties. Angew Chem Int Ed 37(1–2):22–45

    Article  Google Scholar 

  29. Du A, Zhou B, Zhang ZH, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968. doi:10.3390/ma6030941

    Article  Google Scholar 

  30. Bellunato T, Calvi M, Matteuzzi C, Musy M, Perego DL, Storaci B (2007) Refractive index dispersion law of silica aerogel. Eur Phys J C 52(3):759–764

    Article  Google Scholar 

  31. Xiao L, Birks TA (2011) Optofluidic microchannels in aerogel. Opt Lett 36(16):3275–3277

    Article  Google Scholar 

  32. Eris G, Sanli D, Ulker Z, Bozbag SE, Jonás A, Kiraz A, Erkey C (2013) Three-dimensional optofluidic waveguides in hydrophobic silica aerogels via supercritical fluid processing. J Supercrit Fluids 73:28–33

    Article  Google Scholar 

  33. Bian Q, Chen S, Kim B-T, Leventis N, Lu H, Chang Z, Lei S (2011) Micromachining of polyurea aerogel using femtosecond laser pulses. J Non-Cryst Solids 357(1):186–193

    Article  Google Scholar 

  34. Issa NA (2004) High numerical aperture in multimode microstructured optical fibers. Appl Opt 43(33):6191–6197

    Article  Google Scholar 

  35. Djouadi D, Meddouri M, Chelouche A (2014) Structural and optical characterizations of ZnO aerogel nanopowder synthesized from zinc acetate ethanolic solution. Opt Mater 37:567–571

    Article  Google Scholar 

  36. Thorlabs (1999) Optical Substrates. Accessed 16 November 2017

  37. Riedel D, Castex MC (1999) Effective absorption coefficient measurements in PMMA and PTFE by clean ablation process with a coherent VUV source at 125 nm. Appl Phys A 69(4):375–380

    Article  Google Scholar 

  38. Thorlabs (1999) Multimode Fiber Optic Patch Cables. Accessed 16 November 2017

  39. Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36(33):8710–8723

    Article  Google Scholar 

Download references

Acknowledgements

We thank KUYTAM (Koç University Surface Science and Technology Center) and KUTEM (Koç University TÜPRAŞ Energy Center) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Erkey.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özbakır, Y., Jonáš, A., Kiraz, A. et al. Total internal reflection-based optofluidic waveguides fabricated in aerogels. J Sol-Gel Sci Technol 84, 522–534 (2017). https://doi.org/10.1007/s10971-017-4426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4426-8

Keywords

Navigation