Skip to main content
Log in

Preparation and grain-growth of chromia-yttrium aluminum garnet composites fibers by sol–gel method

  • Original Paper: Fundamentals of sol-gel and hybrid materials processing
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The chromia-yttrium aluminum garnet long fibers were prepared by the sol–gel method using aluminum chloride, aluminum powder, yttrium oxide, chromium trioxide, and acetic acid as raw materials. The spinnability of precursor sol increased while the addition content of polyvinylpyrrolidone increased. The precursor sol has excellent spinnability at 40–60 °C. The chromium (VI) was completely reduced to chromium (III) in the preparation process of chromia-yttrium aluminum garnet fibers. A 5 wt% chromium trioxide completely dissolved in solid solution (Y3(Al1-xCrx)5O12). The chromium can hinder grain growth in yttrium aluminum garnet fibers. The grain growth exponent of the fibers was about 2.88 at 1600 °C.

Graphical Abstract

The chromia-yttrium aluminum garnet (Cr-YAG) long fibers were prepared by the sol–gel method using aluminum chloride, aluminum powder, yttrium oxide, chromium trioxide (CrO3), and acetic acid as raw material. A 5 wt% CrO3 completely dissolved in solid solution (Y3(Al1-xCrx)5O12). The Cr6+ can change to Cr3+ in the preparation process of Cr-YAG fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu B, Li J, Yavetskiy R et al. (2015) Fabrication of YAG transparent ceramics using carbonate precipitatedyttria powder. J Eur Ceram Soc 35:2379–2390

    Article  Google Scholar 

  2. Tan H, Ma X, Lu J, Li K (2014) Effect of zirconia on crystallization of yttrium aluminum garnet precursor gel fibers. Ceramics–Silikáty 58:118–122

    Google Scholar 

  3. Pullar RC, Taylor MD, Bhattacharya AK (2006) Effect of sodium on the creep resistance of yttrium aluminium garnet (YAG) fibres. J Eur Ceram Soc 26:1577–1583

    Article  Google Scholar 

  4. Pullar RC, Bhattacharya AK (1999) Polycrystalline yttrium aluminium garnet (YAG) fibres produced from the steaming of an aqueous sol–gel precursor. Mater Lett 39:173–178

    Article  Google Scholar 

  5. Pullar RC, Taylor MD, Bhattacharya AK (1999) The sintering behaviour, mechanical properties and creep resistance of aligned polycrystalline yttrium aluminium garnet (YAG) fibres, produced from an aqueous sol-gel precursor. J Eur Ceram Soc 19:1747–1758

    Article  Google Scholar 

  6. Shojaie-Bahaabad M, Taheri-Nassaj E, Naghizadeh R (2009) Effect of yttria on crystallization and microstructure of an alumina–YAG fiber prepared by aqueous sol–gel process. Ceram Int 35:391–396

    Article  Google Scholar 

  7. Pfeifer S, Bischoff M, Niewa R et al. (2014) Structure formation in yttrium aluminum garnet (YAG) fibers. J Eur Ceram Soc 34:1321–1328

    Article  Google Scholar 

  8. Kim HJ, Fair GE, Hart AM et al. (2015) Development of polycrystalline yttrium aluminum garnet (YAG) fibers. J Eur Ceram Soc 35:4251–4258

    Article  Google Scholar 

  9. Li CH, Zhang YJ, Gong HY et al. (2009) Preparation, microstructure and properties of yttrium aluminum garnet fibers prepared by sol–gel method. Mater Chem Phys 113:31–35

    Article  Google Scholar 

  10. Okada K, Motohashi T, Kameshima Y, Yasumori A (2000) Sol-gel synthesis of YAG/Al2O3 long fibres from water solvent systems. J Eur Ceram Soc 20:561–567

    Article  Google Scholar 

  11. Parya TK, Banerjee S, Sana MB (2012) Densification of pure alpha alumina ceramics with chromia as dopant. J Indian Chem Soc 89:533–541

    Google Scholar 

  12. Han SC, Yoon DY, Brun MK (1995) Migration of grain boundaries in alumina induced by chromia addition. Acta Metallurgica et Materialia 43:977–984

    Article  Google Scholar 

  13. Zhang L, Feng J, Pan W (2015) Vacuum sintering of transparent Cr:Y2O3 ceramics. Ceram Int 41:8755–8760

    Article  Google Scholar 

  14. Singh BK, Mondal B, Mandal N (2016) Machinability evaluation and desirability function optimization of turning parameters for Cr2O3 doped zirconia toughened alumina (Cr-ZTA) cutting insert in high speed machining of steel. Ceram Int 42:3338–3350

    Article  Google Scholar 

  15. Manor E (1997) Grain growth inhibition in nanocrystalline alumina doped with chromia. Nanostruct Mater 8:359–366

    Article  Google Scholar 

  16. Towata A, Hwang HJ, Yasuoka M et al. (2001) Preparation of polycrystalline YAG/alumina composite fibers and YAG fiber by sol-gel method. Composites Part A 32:1127–1131

    Article  Google Scholar 

  17. Shen Z, Ekstrand A, Nygren M (2000) Oxide/oxide composites in the system Cr2O3-Y2O3-Al2O3. J Eur Ceram Soc 20:625–630

    Article  Google Scholar 

  18. Chandradass J, Balasubramanian M (2006) Effect of magnesium oxide on sol-gel spun alumina and alumina-zirconia fibres. J Eur Ceram Soc 26:2611–2617

    Article  Google Scholar 

  19. Schmucker M, Schneider H, Mauer T et al. (2005) Temperature-dependent evolution of grain growth in mullite fibres. J Eur Ceram Soc 25:3249–3256

    Article  Google Scholar 

  20. Tan H, Ma X, Lu J et al. (2012) Preparation of yttrium aluminum garnet fibers by the sol-gel method. Ceramics–Silikáty 56(3):187–190

    Google Scholar 

  21. Shojaie-Bahaabad M, Taheri-Nassaj E, Naghizadeh R (2008) An alumina–YAG nanostructured fiber prepared from an aqueous sol–gel precursor: preparation, rheological behavior and spinnability. Ceram Int 34:1893–1902

    Article  Google Scholar 

  22. Tan H, Ding Y, Yang J (2010) Mullite fibers prepared from an inorganic sol–gel precursor. J Sol-Gel Sci Technol 53:378–383

    Article  Google Scholar 

  23. Ma X, Wang C, Tan H et al. (2016) Preparation and crystal activation energy of long yttrium aluminum garnet gel fibers. J Sol-Gel Sci Technol 80:226–232

  24. Zhang TS, Ma J, Kong LB et al. (2003) Final-stage sintering behavior of Fe-doped CeO2. Mater Sci Eng B 103:177–183

    Article  Google Scholar 

  25. Kochawattana S, Stevenson A, Lee SH et al. (2008) Sintering and grain growth in SiO2 doped Nd:YAG. J Eur Ceram Soc 28:1527–1534

    Article  Google Scholar 

  26. Tan H, Ma X, Wang C et al. (2013) Kinetics of grain-growth of yttrium aluminum garnet fibers prepared by sol-gel method. Ceramics–Silikáty 57:285–289

    Google Scholar 

  27. Boulesteix R, Maître A, Baumard JF et al. (2009) The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms. J Eur Ceram Soc 29:2517–2526

    Article  Google Scholar 

  28. Chaim R, Marder-Jaeckel R, Shen JZ (2006) Transparent YAG ceramics by surface softening of nanoparticles in spark plasma sintering. Mater Sci Eng A 429:74–78

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of the National Science Foundation of China (51641106) and the Education Department Foundation of Shaanxi in China (Grant No. 16JF008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Ma or Zhenlin Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Dr. Zhenlin Lv is the first corresponding author in the article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Lv, Z., Tan, H. et al. Preparation and grain-growth of chromia-yttrium aluminum garnet composites fibers by sol–gel method. J Sol-Gel Sci Technol 83, 275–280 (2017). https://doi.org/10.1007/s10971-017-4410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4410-3

Keywords

Navigation