Skip to main content
Log in

Interplay of dopants and defects in magnetic evolution of La and Fe co-doped TiO 2 nanoparticle

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

La and Fe co-doped titanium dioxide nanoparticles with various La concentrations have been synthesized by sol–gel method. All the samples were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence spectroscopy, Fourier transform infrared and magnetic measurement techniques, respectively. The results show that both La and Fe ions have doped into the titanium dioxide lattice, and no secondary phases including La and Fe ions were detected. The magnetic results demonstrated that the prepared La and Fe co-doped titanium dioxide samples had complex magnetic mechanism including room-temperature ferromagnetic and paramagnetic behaviors. The room temperature ferromagnetic behavior decreases while paramagnetic contribution increases with the increasing of La content. The magnetic properties are possibly due to the ferromagnetic coupling between two neighboring Fe3+ ions via oxygen vacancy (F+ center) by forming bound magnetic polarons. Increase in La concentration decreases the proportion of oxygen vacancy, and thereby decreases the ferromagnetic behavior, thus increases the paramagnetic ordering.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Navarro AMM, Torres CER, Bilovo V et al. (2014) Study of the relation between oxygen vacancies and ferromagnetism in Fe-doped TiO2 nano-powders. J Appl Phys 115:223908

    Google Scholar 

  2. Sellers MCK, Seebauer EG (2011) Structural and magnetic properties of Mn-doped anatase TiO2 films synthesized by atomic layer deposition. Appl Phys A 104:583–586

    Article  Google Scholar 

  3. Jung SW, An S-J, Jung Gyu-Chul Yi et al. (2002) Ferromagnetic properties of Zn1-xMnxO epitaxial thin films. Appl Phys Lett 80:4561–4563

    Article  Google Scholar 

  4. Ekicibil A, Bulun G, Çetin SK et al. (2012) Magnetic Properties of Zn1−xNixO (0.25≤x≤0.50) Prepared by Solid-State Reactions. J Supercond Novel Magn 25:435–440

    Article  Google Scholar 

  5. Akyol M, Kılıç Çetin S, Ekicibil A (2016) Microstructural and magnetic properties of Ax:Zn1-xO (A=Mn, Gd and Mn/Gd) nanocrystals. Philoso Mag 96:31–44

    Article  Google Scholar 

  6. Lamrani F, Fakhim A, Ouchri M et al. (2016) The effect of fluorine doping on electronic structure and ferromagnetic stability of Os-doped TiO2 rutile phase: First-principles calculations. J Magn Magn Mater 401:977–981

    Article  Google Scholar 

  7. El Haimeur A, Ballouch A, Benali B et al. (2016) Effect of grain size on magnetic properties of Zno doped with nickel single impurities. J Supercond Nov Magn 29:427–437

    Article  Google Scholar 

  8. Zhou ZP, Wang HY, Yang ZX (2016) Intrinsic defect-mediated magnetism in Fe-N codoped TiO2. J Alloy Compd 657:372–378

    Article  Google Scholar 

  9. Stella C, Prabhakar D, Prabhu M et al. (2016) Oxygen vacancies induced room temperature ferromagnetism and gas sensing properties of Co-doped TiO2 nanoparticles. J Mater Sci-Mater Electron 27:1636–1644

    Article  Google Scholar 

  10. Zhang H, Liu YC, Wu YB et al. (2015) Superhydrophilic and highly transparent Tio2 films prepared by dip coating for photocatalytic degradation of methylene blue. J Nanosci Nanotechno 15:2531–2536

    Article  Google Scholar 

  11. Song HJ, You SS, Chen T et al. (2015) Controlled preparation of TiO2 hollow microspheres constructed by crosslinked nanochains with high photocatalytic activity. J Mater Sci-Mater Electron 26:8442–8450

    Article  Google Scholar 

  12. Zhang JJ, Wang XY, Wang JM et al. (2016) Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst. Chem Phys Lett 643:53–60

    Article  Google Scholar 

  13. Kanmani SS, Ramachandran K (2012) Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications. Renew Energ 43:149–156

    Article  Google Scholar 

  14. Bolokang AS, Cummings FR, Dhonge BP et al. (2015) Characteristics of the mechanical milling on the room temperature ferromagnetism and sensing properties of TiO2 nanoparticles. Appl Surf Sci 311:362–372

    Article  Google Scholar 

  15. Matsumoto Y, Murakami M, Shono T et al. (2001) Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 5505:854–856

    Article  Google Scholar 

  16. Susmita P, Biswajit C, Amarjyoti C et al. (2014) Magnetic property study of Gd doped TiO2 nanoparticles. J Alloy Compd 601:201–206

    Article  Google Scholar 

  17. Srinivas K, Reddy PV (2014) Synthesis, structural, and magnetic properties of nanocrystalline Ti0.95Co0.05O2-Diluted magnetic semiconductors. J Supercond Nov Magn 27:2521–2538

    Article  Google Scholar 

  18. Semisalova AS, Mikhailovsky YO, Smekhova A et al. (2015) Above room temperature ferromagnetism in Co- and V-Doped TiO2- revealing the different contributions of defects and impurities. J Supercond Nov Magn 28:805–811

    Article  Google Scholar 

  19. Tian JJ, Gao HP, Deng HM et al. (2013) Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon(100) substrates by sol-gel process. J Alloy Compd 581:318–323

    Article  Google Scholar 

  20. Santara B, Giri PK, Dhara S et al. (2014) Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J Phys D: Appl Phys 47:235304

    Article  Google Scholar 

  21. Verma KC, Singh J, Ram M et al. (2012) Enhancement in the magnetic, optical and electrical properties of Ti0.97Co0.03O2 and Ti0.97Fe0.03O2 nanoparticles with Ce co-doping. Phys Scripta 86:025704

    Article  Google Scholar 

  22. Gao HP, Tian JJ, Zheng HW et al. (2015) Effects of Fe doping on the optical and magnetic properties of TiO2 films deposited on Si substrates by a sol-gel route. J Sol-Gel Sci Technol 74:521–527

    Article  Google Scholar 

  23. Ma XY (2012) The magnetic properties of Gd doped ZnO nanowires. Thin Solid Films 520:5752–5755

    Article  Google Scholar 

  24. Sundararaj A, Chandrasekaran G, Therese HA et al. (2015) Effect of electron beam rapid thermal annealing on crystallographic, structural and magnetic properties of Zn1-xSmxO thin films. J Magn Magn Mater 378:112–117

    Article  Google Scholar 

  25. Tobaldi DM, Sever Škapin A, Pullar RC et al. (2013) Titanium dioxide modified with transition metals and rare earth elements: Phase composition, optical properties, and photocatalytic activity. Ceram Int 39:2619–2629

    Article  Google Scholar 

  26. Le Boulbar E, Millon E, Boulmer-Leborgne C et al. (2014) Optical properties of rare earth-doped TiO2 anatase and rutile thin films grown by pulsed-laser deposition. Thin Solid Films 553:13–16

    Article  Google Scholar 

  27. Bandi VR, Raghavan CM, Grandhe BK et al. (2013) Synthesis, structural and optical properties of pure and rare-earth ion doped TiO2 nanowire arrays by a facile hydrothermal technique. Thin Solid Films 547:207–211

    Article  Google Scholar 

  28. Meksi M, Turki A, Kochkar H et al. (2016) The role of lanthanum in the enhancement of photocatalyticproperties of TiO2 nanomaterials obtained by calcination ofhydrogenotitanate nanotubes. Appl Catal B: Environ 181:651–660

    Article  Google Scholar 

  29. Sadhu S, Poddar P (2013) Growth of oriented single crystalline La-doped TiO2 nanorod arrays electrode and investigation of optoelectronic properties for enhanced photoelectrochemical activity. RSC Adv 3:10363–10369

    Article  Google Scholar 

  30. Thangeeswari T, Murugasen P, Velmurugan J (2015) Influence of Co and Dy doping on the optical and magnetic properties of ZnO nanoparticles for DMS application. J Supercond Nov Magn 28:2505–2515

    Article  Google Scholar 

  31. Jiang BZ, Phan TL, Yang DS et al. (2010) Magnetism in Co-doped rutile TiO2 nanoparticles. Solid State Commun. 150:1932–1935

    Article  Google Scholar 

  32. Patel SKS, Gajbhiye NS, Date SK (2011) Ferromagnetism of Mn-doped TiO2 nanorods synthesized by hydrothermal method. J Alloy Compd 509S:S427–S430

    Article  Google Scholar 

  33. Ulrich A, He Y, Cheng H et al. (2010) Influence of subsurface defects on the surface reactivity of TiO2: water on anatase (101). J Phys Chem C 114:1278–1284

    Article  Google Scholar 

  34. Mi WB, Jiang EY, Bai HL (2009) Structure, magnetic and optical properties of polycrystalline Co-doped TiO2 films. J Magn Magn Mater 321:2472–2476

    Article  Google Scholar 

  35. Sahu M, Biswas P (2011) Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res Lett 6:1–14

    Google Scholar 

  36. Choudhury B, Choudhury A, Borah D (2015) Interplay of dopants and defects in making Cu doped TiO2 nanoparticle a ferromagnetic semiconductor. J Alloy Compd 646:692–698

    Article  Google Scholar 

  37. Mathew DS, Juang RS (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65

    Article  Google Scholar 

  38. Köseoğlu Y (2015) Structural and magnetic properties of Cr doped NiZn-ferrite nanoparticles prepared by surfactant assisted hydrothermal technique. Ceram Int 41:6417–6423

    Article  Google Scholar 

  39. Köseoğlu Y (2016) Fuel aided rapid synthesis and room temperature ferromagnetism of M0.1Co0.1Zn0.8O (M=Mn, Ni, Fe and Cu) DMS nanoparticles. Ceram Int 42:9190–9195

    Article  Google Scholar 

  40. Mo SD, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys Rev B 51:13023–13032

    Article  Google Scholar 

  41. Choudhury B, Choudhury A (2013) Tailoring luminescence properties of TiO2 nanoparticles by Mn doping. J Lumin 136:339–346

    Article  Google Scholar 

  42. Liu J, Li J, Sedhain A et al. (2008) Structure and photoluminescence study of TiO(2) nanoneedle texture along vertically aligned carbon nanofiber arrays. J Phys Chem C 112:17127–17132

    Article  Google Scholar 

  43. Lei Y, Zhang L, Meng G et al. (2001) Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett 78:1125–1127

    Article  Google Scholar 

  44. Choudhury B, Dey M, Choudhury A (2014) Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping. Appl Nanosci 4:499–506

    Article  Google Scholar 

  45. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 99:16646–16654

    Article  Google Scholar 

  46. Pereira A, Filho P, Acun J et al. (2012) Enhancement of optical absorption by modulation of the oxygen flow of TiO2 films deposited by reactive sputtering. J Appl Phys 111:113513

    Article  Google Scholar 

  47. Choudhury B, Choudhury A (2013) Room temperature ferromagnetism in defective TiO2 nanoparticles: Role of surface and grain boundary oxygen vacancies. J Appl Phys 114:203906

    Article  Google Scholar 

  48. Liqiang J, Yichun Q, Baiqi W et al. (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90:1773–1787

    Article  Google Scholar 

  49. Hamadanian M, Reisi Vanani A, Majedi A (2010) Sol-Gel preparation and characterization of Co/TiO2 nanoparticles: application to the degradation of methyl orange. J Iran Chem Soc 7:S52–S58

    Article  Google Scholar 

  50. Praveen P, Viruthagiri G, Mugundan S et al. (2014) Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles - Synthesized via sol-gel route. Spectrochim Acta A 117:622–629

    Article  Google Scholar 

  51. Perumal S, Sambandam CG, Prabu KM et al. (2014) Synthesis and charecterization studies of nano TiO2 prepared via Sol-Gel method. Int J Res Eng Technol 4:651–657

    Google Scholar 

  52. Choudhury B, Choudhury A (2012) Luminescence characteristics of cobalt doped TiO2 nanoparticles. J Lumin 132:178–184

    Article  Google Scholar 

  53. Das K, Sharma SN, Kumar M et al. (2009) Morphology dependent luminescence properties of Co doped TiO2 nanostructures. J Phys Chem C 113:14783–14792

    Article  Google Scholar 

  54. Lee HM, Kim SJ, Shim IB et al. (2004) Coexistence of ferromagnetic and paramagnetic phases in Ti0.995 57Fe0.005O2. J Magn Magn Mater 272–276:e1565–e1566

    Article  Google Scholar 

  55. Pan XY, Jiang DM, Liu Y et al. (2006) Structural characterization and ferromagnetic behavior of Fe-doped TiO2 powder by high-energy ball milling. J Magn Magn Mater 305:388–391

    Article  Google Scholar 

  56. Beltrán JJ, Barrero CA, Punnoose A (2015) Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys Chem Chem Phys 17:15284–15296

    Article  Google Scholar 

  57. Steams MB, Cheng Y (1994) Determination of para- and ferromagnetic components of magnetization and magnetoresistance of granular Co/Ag films. J Appl Phys 75:6894–6899

    Article  Google Scholar 

  58. Calderon MJ, Sarma SD (2007) Theory of carrier mediated ferromagnetism in dilute magnetic oxides. Ann Phys 322:2618–2634.

    Article  Google Scholar 

  59. Zener C (1951) Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys Rev 82:403–405

    Article  Google Scholar 

  60. Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179

    Article  Google Scholar 

  61. Coey JMD, Douvalis AP, Fitzgerald CB et al. (2004) Ferromagnetism in Fe-doped SnO2 thin films. Appl Phys Lett 84:1332–1334

    Article  Google Scholar 

  62. Choudhury B, Verma R, Choudhury A (2014) Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2 nanoparticles. RSC Adv 4:29314–29323

    Article  Google Scholar 

  63. Patel SKS, Gajbhiye NS (2012) Room temperature magnetic properties of Cu-doped titanate, TiO2(B) and anatase nanorods synthesized by hydrothermal method. Mater Chem Phys 132:175–179

    Article  Google Scholar 

  64. Zhang L, Ge S, Zuo Y et al. (2010) Influence of Oxygen Flow Rate on the Morphology and Magnetism of SnO2 Nanostructures. J Phys Chem C 114:7541–7547

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21674123); and the Major Scientific Project of Fujian Province, China (Grant No. 2014NZ0002-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, Y., Ouyang, X. et al. Interplay of dopants and defects in magnetic evolution of La and Fe co-doped TiO 2 nanoparticle. J Sol-Gel Sci Technol 83, 365–374 (2017). https://doi.org/10.1007/s10971-017-4406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4406-z

Keywords

Navigation