Permeation and optical properties of YAG:Er3+ fiber membrane scintillators prepared by novel sol–gel/electrospinning method

  • Zhaoxi Chen
  • Artem A. Trofimov
  • Luiz G. Jacobsohn
  • Hai Xiao
  • Konstantin G. Kornev
  • Dong Xu
  • Fei Peng
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)


An electrospinning method for fabrication of the YAG:Er3+ fibrous membrane is developed and the scintillation properties of the obtained membranes were examined. A homogeneous precursor YAG sol was synthesized allowing to control the sol–gel transition. The synthesized precursor allows one to achieve the 5 wt.% level of fiber doping with Er without formation of any undesired crystalline phases. It was found that the relative humidity had a strong impact on the fiber microstructure. The fibers obtained at the low relative humidity level (~30%) had almost straight cylindrical shape with an average diameter of ~590 nm, their surface was smooth. The shape of fibers obtained at the high relative humidity level (~50%) deviated from the straight cylindrical shape and the average diameter was larger, ~1.12 µm. The fluid permeability of membranes, K, obtained at the low relative humidity level was measured using an upward wicking experiment to give K~10−13 m2. The YAG:Er membrane presented a strong green photoluminescence under ultraviolet excitation and intense radioluminescence dominated by emission lines at 398 and 467 nm under the X-ray excitation. The properties of these materials make them promising candidates as porous scintillators for the detection of ionizing radiation of flowing fluids.

Graphical Abstract

Open image in new window


YAG:Er fiber Fluid transport Luminescence Porous scintillator 



This work is supported by the Department of Energy under grant DE-FE00012272 and the National Science Foundation under Grant No. 1207080.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Keillor ME, Burggraf LW (1997) Detecting alpha radiation by scintillation in porous materials. IEEE Trans Nucl Sci 44(5):1741–1746CrossRefGoogle Scholar
  2. 2.
    Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6(11):841–850CrossRefGoogle Scholar
  3. 3.
    Huang MH et al. (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRefGoogle Scholar
  4. 4.
    Dong G et al. (2010) Size-dependent polarized photoluminescence from Y3Al5O12: Eu3+ single crystalline nanofiber prepared by electrospinning. J Mater Chem 20(8):1587–1593CrossRefGoogle Scholar
  5. 5.
    Park SJ, Chase GG, Jeong KU, Kim HY (2010) Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor. J Solgel Sci Technol 54(2):188–194CrossRefGoogle Scholar
  6. 6.
    Zhu L, Gu L, Zhou Y, Cao S, Cao X (2011) Direct production of a free-standing titanate and titania nanofiber membrane with selective permeability and cleaning performance. J Mater Chem 21(33):12503–12510CrossRefGoogle Scholar
  7. 7.
    Feng C, Khulbe KC, Matsuura T, Tabe S, Ismail AF (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135CrossRefGoogle Scholar
  8. 8.
    Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high‐performance polycrystalline Nd: YAG ceramics for solid‐State lasers. J Am Ceram Soc 78(4):1033–1040CrossRefGoogle Scholar
  9. 9.
    Pfeifer S, Bischoff M, Niewa R, Clauß B, Buchmeiser MR (2014) Structure formation in yttrium aluminum garnet (YAG) fibers. J Eur Ceram Soc 34(5):1321–1328CrossRefGoogle Scholar
  10. 10.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170CrossRefGoogle Scholar
  11. 11.
    Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):111101CrossRefGoogle Scholar
  12. 12.
    Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A Physicochem Engi Asp 187:469–481CrossRefGoogle Scholar
  13. 13.
    Shojaie-Bahaabad M, Taheri-Nassaj E, Naghizadeh R (2008) An alumina–YAG nanostructured fiber prepared from an aqueous sol–gel precursor: preparation, rheological behavior and spinnability. Ceram Int 34(8):1893–1902CrossRefGoogle Scholar
  14. 14.
    Li C, Zhang Y, Gong H, Zhang J, Nie L (2009) Preparation, microstructure and properties of yttrium aluminum garnet fibers prepared by sol–gel method. Mater Chem Phys 113(1):31–35CrossRefGoogle Scholar
  15. 15.
    Pullar RC, Taylor MD, Bhattacharya AK (1999) The sintering behaviour, mechanical properties and creep resistance of aligned polycrystalline yttrium aluminium garnet (YAG) fibres, produced from an aqueous sol–gel precursor. J Eur Ceram Soc 19(9):1747–1758CrossRefGoogle Scholar
  16. 16.
    Shojaie-Bahaabad M, Taheri-Nassaj E, Naghizadeh R (2008) An alumina–YAG nanostructured fiber prepared from an aqueous sol–gel precursor: preparation, rheological behavior and spinnability. Ceram Int 34(8):1893–1902CrossRefGoogle Scholar
  17. 17.
    Liu Y, Zhang ZF, Halloran J, Laine RM (1998) Yttrium aluminum garnet fibers from metalloorganic precursors. J Am Ceram Soc 81(3):629–645CrossRefGoogle Scholar
  18. 18.
    Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica–PVA nanofibers via sol–gel electrospinning. Langmuir 28(13):5834–5844CrossRefGoogle Scholar
  19. 19.
    Hou Z et al. (2008) Preparation and luminescence properties of YVO4: Ln and Y(V,P)O4: Ln (Ln= Eu3+, Sm3+, Dy3+) nanofibers and microbelts by sol−gel/electrospinning process. Chem Mater 20(21):6686–6696CrossRefGoogle Scholar
  20. 20.
    Choi SS, Lee SG, Im SS, Kim SH, Joo YL (2003) Silica nanofibers from electrospinning/sol–gel process. J Mater Sci Lett 22(12):891–893CrossRefGoogle Scholar
  21. 21.
    Khalil KA, Almajid AA, El-Danaf EA, El Rayes MM, Sherif ESM (2012) Direct fabrication of yttrium aluminium garnet nanofibers by electrospinning. Int J Electrochem Sci 7:12218–12226Google Scholar
  22. 22.
    Suryamas AB, Munir MM, Iskandar F, Okuyama K (2009) Photoluminescent and crystalline properties of Y3− xAl5O12: Cex3+ phosphor nanofibers prepared by electrospinning. J Appl Phys 105(6):064311CrossRefGoogle Scholar
  23. 23.
    Ma Z et al. (2012) Porous YAG: Nd3+ fibers with excitation and emission in the human “NIR Optical Window” as luminescent drug carriers. Chem Eur J 18(9):2609–2616CrossRefGoogle Scholar
  24. 24.
    Tsai CC, Kornev KG (2013) Characterization of permeability of electrospun yarns. Langmuir 29(33):10596–10602CrossRefGoogle Scholar
  25. 25.
    C J Brinker, G W Scherer (2013), Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, Boston, MAGoogle Scholar
  26. 26.
    Lloyd GO, Steed JW (2009) Anion-tuning of supramolecular gel properties. Nat Chem 1(6):437–442CrossRefGoogle Scholar
  27. 27.
    Veith M et al. (1999) Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods. J Mater Chem 9(12):3069–3079CrossRefGoogle Scholar
  28. 28.
    Zuo W et al. (2005) Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Poly Eng Sci 45(5):704–709CrossRefGoogle Scholar
  29. 29.
    Chen Z et al. (2015) Electrospun mullite fibers from the sol–gel precursor. J Sol-Gel Sci Technol 74(1):208–219CrossRefGoogle Scholar
  30. 30.
    Xia G, Zhou S, Zhang J, Xu J (2005) Structural and optical properties of YAG: Ce 3+ phosphors by sol–gel combustion method. J Cryst Growth 279(3):357–362CrossRefGoogle Scholar
  31. 31.
    Lucas R (1918) Rate of capillary ascension of liquids. Kolloid Z 23(15):15–22CrossRefGoogle Scholar
  32. 32.
    Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273CrossRefGoogle Scholar
  33. 33.
    Callegari G, Tyomkin I, Kornev KG, Neimark AV, Hsieh YL (2011) Absorption and transport properties of ultra-fine cellulose webs. J Colloid Interface Sci 353(1):290–293CrossRefGoogle Scholar
  34. 34.
    Gruber JB et al. (1993) Energy levels and correlation crystal-field effects in Er 3+-doped garnets. Phys Rev B 48(21):15561CrossRefGoogle Scholar
  35. 35.
    Mierczyk Z et al. (2000) Er 3+ and Yb 3+ doped active media for ‘eye safe’laser systems. J Alloys Compd 300:398–406CrossRefGoogle Scholar
  36. 36.
    Zorenko Y et al. (2014) Luminescent properties and energy transfer processes in YAG: Er single crystalline films. J Lumin 154:198–203CrossRefGoogle Scholar
  37. 37.
    Zorenko Y et al. (2007) Exciton and antisite defect‐related luminescence in Lu3Al5O12 and Y3Al5O12 garnets. Phys Status Solidi B 244(6):2180–2189CrossRefGoogle Scholar
  38. 38.
    Zorenko Y et al. (2010) Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds. IOP Conf Ser Mater Sci Eng 15(1):012060CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringClemson UniversityClemsonUSA
  2. 2.COMSET, Center for Optical Materials Science and Engineering TechnologiesClemson UniversityAndersonUSA
  3. 3.Department of Electrical and Computer EngineeringClemson UniversityClemsonUSA
  4. 4.School of Material Science and EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations