Skip to main content
Log in

Preparation and properties of monolithic and hydrophobic gelatin–silica composite aerogels for oil absorption

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, highly porous and low density silica–gelatin composite aerogels with excellent absorption capacity were obtained. The preparation process was as follows: firstly, the gel with stable network structure was formed by sol–gel method; secondly, after soaking the gel with hexamethyldisilazane solution, the aerogel was prepared by freeze-drying; finally, the aerogel was coated with hexamethyldisilazane via chemical vapor deposition. The composite aerogels with 30% gelatin showed optimal performance in practical applications: lowest bulk density (0.068 g/cm3), highest porosity (96%), largest pore volume (1.24 cm3/g), and maximum oil/organic solvents absorption capacity (12–27 g/g). The excellent oil/solvent absorption capacity and recyclability indicated that the hydrophobic gelatin–silica composite aerogels could be a promising candidate for oil absorption.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) J Mater Chem A 2:2445–2460

    Article  Google Scholar 

  2. Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) ACS Appl Mater Interfaces 3:1813–1816

    Article  Google Scholar 

  3. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Nature 452:301–310

    Article  Google Scholar 

  4. Maleki H (2016) Chem Eng J 300:98–118

    Article  Google Scholar 

  5. Husseien M, Amer AA, El-Maghraby A, Taha NA (2009) Int J Environ Sci Tech 6:123–130

    Article  Google Scholar 

  6. Ibrahim S, Wang S, Ang HM (2010) Biochem Eng J 49:78–83

    Article  Google Scholar 

  7. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S (2003) J Porous Mater 10:159–170

    Article  Google Scholar 

  8. Chen J, Fang P, Du Y, Hou X (2016) Colloid Polym Sci 294:119–125

    Article  Google Scholar 

  9. Du Y, Fang P, Chen J, Hou X (2016) Polym Adv Technol 27:393–403

    Article  Google Scholar 

  10. Gurav JL, Rao AV, Nadargi DY, Park HH (2010) J Mater Sci 45:503–510

    Article  Google Scholar 

  11. Rao AV, Hegde ND, Hirashima H (2007) J Colloid Interf Sci 305:124–132

    Article  Google Scholar 

  12. Yu Y, Wu X, Guo D, Fang J (2014) J Mater Sci 49:7715–7722

    Article  Google Scholar 

  13. He S, Huang D, Bi H, Li Z, Yang H, Cheng X (2015) J Non-Cryst Solids 410:58–64

    Article  Google Scholar 

  14. Parale VG, Mahadik DB, Kavale MS, Rao AV, Wagh PB, Gupta SC (2011) Soft Nanosci Lett 1:97–104

    Article  Google Scholar 

  15. Zhang G, Dass A, Rawashdeh A-MM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman D, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis NJ (2004) J Non-Cryst Solids 350:152–164

    Article  Google Scholar 

  16. Shahzaman M, Bagheri R, Masoomi M (2016) J Non-Cryst Solids 452:325–335

    Article  Google Scholar 

  17. Matias T, Varino C, de Sousa HC, Braga MEM, Portugal A, Coelho JFJ, Duraes L (2016) J Mater Sci 51:6781–6792

    Article  Google Scholar 

  18. Domenech B, Mata I, Molins E (2016) RSC Advances 6:10736–10742

    Article  Google Scholar 

  19. Zhang Y, Wang J, Wei Y, Zhang X (2017) New J Chen 41:1953–1958

    Article  Google Scholar 

  20. Wang X, Jana SC (2013) ACS Appl Mater Interfaces 5:6423–6429

    Article  Google Scholar 

  21. Wei Y, Wang J, Zhang Y, Wang L, Zhang X (2015) RSC Adv 5:91407–91413

    Article  Google Scholar 

  22. Wang Z, Wang D, Qian Z, Guo J, Dong H, Zhao N, Xu J (2015) ACS Appl Mater Interfaces 7:2016–2024

    Article  Google Scholar 

  23. Yun S, Luo H, Gao Y (2015) J Mater Chem A 3:3390–3398

    Article  Google Scholar 

  24. Ma Q, Liu Y, Dong Z, Wang J, Hou X (2015) J Appl Polym Sci 132(41770):1–11

    Google Scholar 

  25. Yun S, Luo H, Gao Y (2014) J Mater Chem A 2:14542–14549

    Article  Google Scholar 

  26. Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F (2013) J Mater Chem 1:7963–7970

    Article  Google Scholar 

  27. Visser J, Gawlitta D, Benders KEM, Pouran SMH, van Weeren PR, Dhert WJA, Malda J (2015) Biomaterials 37:174–182

    Article  Google Scholar 

  28. Duconseille A, Astruc T, Quintana N, Meersman F, Sante-Lhoutellier V (2015) Food Hydrocollodis 43:360–376

    Article  Google Scholar 

  29. Alfaro AT, Balbinot E, Weber CI, Tonial IB, Machado-Lunkes A (2015) Food Eng Rev 7:33–44

    Article  Google Scholar 

  30. Negahi Shirazi A, Fathi A, Suarez FG, Wang Y, Maitz PK, Dehghani FA (2015) ACS Appl Mater Interfaces 8:1676–1686

    Article  Google Scholar 

  31. Veres P, Keri M, Banyai I, Fabian I, Domingo C, Kalmar J (2017) Colloids and Surfaces B: Biointerfaces 152:229–237

    Article  Google Scholar 

  32. Mahony O, Tsigkou O, Lonescu C, Minelli C, Ling L, Hanly R, Smith ME, Stevens MM, Jones JR (2010) Adv Funct Mater 20:3835–3845

    Article  Google Scholar 

  33. Arcos D, Vallet-Regí M (2010) Acta Biomater 6:2874–2888

    Article  Google Scholar 

  34. Mahesh S, Joshi SC (2015) Int J Heat Mass Transfer 87:606–615

    Article  Google Scholar 

  35. Veresa P, López-Periago AM, Lázár I, Saurina J, Domingo C (2015) Int J Pharmaceutics 496:360–370

    Article  Google Scholar 

  36. Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Choib WY, Kimb HE (2012) J Mater Chem 22:14133–14140

    Article  Google Scholar 

  37. Dashnyam K, Perez RA, Singh RK, Lee E-J, Kim H-W (2014) RSC Advances 4:40841–40851

    Article  Google Scholar 

  38. Wang A, Yang Y, Yan X, MaG, Bai S, Li J (2016) RSC Advances 6:70064–70071

    Article  Google Scholar 

  39. Baldino L, Concilio S, Cardea S, Reverchon E (2016) Polymer 8:1–12

    Google Scholar 

  40. Frazier SD, Srubar III WV (2016) Mater Sci Eng C 62:467–473

    Article  Google Scholar 

  41. Jeong AY, Koo SM, Kim DP (2000) J Sol–Gel Sci Technol 19:483–487

    Article  Google Scholar 

  42. Wang J, Zhou Q, Song D, Qi B, Zhang Y, Shao Y, Shao Z (2015) J Sol–Gel Sci Technol 76:501–509

    Article  Google Scholar 

  43. Yang L, Guo J, Yu Y, An Q, Wang L, Li S, Huang X, Mu S, Qi S (2016) Carbohydr Polym 142:275–281

    Article  Google Scholar 

  44. Duan Y, Jana SC, Lama B, Espe MP (2013) Langmuir 29:6156–6165

    Article  Google Scholar 

  45. Jasper JJ (1972) J Phys Chem Ref Data 1:841–1010

    Article  Google Scholar 

  46. Yun S, Luo H, Gao Y (2014) RSC Adv 4:4535–4542

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the financial support of Science and Technology Foundation of Tianjin (Grants No. 14JCTPJC00505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Zhao or Xin Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, L., Zhao, J., Kang, X. et al. Preparation and properties of monolithic and hydrophobic gelatin–silica composite aerogels for oil absorption. J Sol-Gel Sci Technol 83, 197–206 (2017). https://doi.org/10.1007/s10971-017-4378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4378-z

Keywords

Navigation