Skip to main content
Log in

Towards improved adsorption of phenolic compounds by surface chemistry tailoring of silica aerogels

  • Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The high toxicity/volatility and low biodegradation of phenolic compounds are serious concerns in terms of environmental and health impact—their recommended max. value for drinking water is 0.005 mg/L. They are usually removed from effluents by adsorption, but they show a complex interaction behavior with adsorbents, because the hydroxyl group and the hydrophobic aromatic ring are very close. In this work, the versatility of Si chemistry was explored to tailor the surface chemistry of silica aerogels and improve their adsorption performance towards phenolic compounds. Methyltrimethoxysilane and tetramethylorthosilicate were combined to adjust the hydrophobicity of the obtained aerogels. In the next stage, β-cyclodextrin, with its highly hydrophobic cavity, was grafted into the gels to improve the capturing of aromatic rings. For a sustainable linkage of β-cyclodextrin to silica, the methyltrimethoxysilane/tetramethylorthosilicate precursor system was modified by adding an epoxy functionalized silane. A first screening of the adsorption performance shows a 1.5–2-fold increase of the adsorption capacity and removal efficiencies of the epoxy-cyclodextrin-modified aerogel toward phenol and p-cresol when compared to aerogel counterpart without modification. Freundlich isotherm model was the most suitable to describe the equilibrium data of aerogels with or without β-cyclodextrin, with the curves showing favorable profiles, more evident in the case of aerogels with β-cyclodextrin. Apart from the improving of the sorption capacity for phenolic compounds (achieving a maximum of 60 mg g−1 in the case of p-cresol), the utilization of the biodegradable β-cyclodextrin moiety obtained from natural and sustainable resources is a further asset of the epoxy-cyclodextrin-modified aerogel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dąbrowski A, Podkościelny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon - a critical review. Chemosphere 58(8):1049–1070. doi:10.1016/j.chemosphere.2004.09.067

    Article  Google Scholar 

  2. Michałowicz J, Duda W (2007) Phenols - Sources and toxicity. Pol J Environ Stud 16(3):347–362

    Google Scholar 

  3. Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288. doi:10.1016/j.jhazmat.2008.03.045

    Article  Google Scholar 

  4. Fang HH, Chan OC (1997) Toxicity of phenol towards anaerobic biogranules. Water Res 31(9):2229–2242

    Article  Google Scholar 

  5. Polat H, Molva M, Polat M (2006) Capacity and mechanism of phenol adsorption on lignite International. J Miner Process 79:264–273. doi:10.1016/j.minpro.2006.03.003

    Article  Google Scholar 

  6. Cermola F, DellaGreca M, Iesce M, Montella S, Pollio A, Temussi F (2004) A mild photochemical approach to the degradation of phenols from olive oil mill wastewater. Chemosphere 55:1035–1041. doi:10.1016/j.chemosphere.2003.12.016

    Article  Google Scholar 

  7. Dursun G, Çiçek H, Dursun AY (2005) Adsorption of phenol from aqueous solution by using carbonized beet pulp. J Hazard Mater 125:175–182. doi:10.1016/j.jhazmat.2005.05.023

    Article  Google Scholar 

  8. Aksu Z, Yener J (2001) A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manage 21:695–702. doi:10.1016/S0956-053X(01)00006-X

    Article  Google Scholar 

  9. Bernardo M, Santos A, Cantinho P, Minhalma M (2011) Cork industry wastewater partition by ultra/nanofiltration: A biodegradation and valorisation study. Water Res 45:904–912. doi:10.1016/j.watres.2010.09.027

    Article  Google Scholar 

  10. Justino CI, Duarte K, Loureiro F, Pereira R, Antunes SC, Marques SM, Gonçalves F, Rocha-Santos TA, Freitas AC (2009) Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation. J Hazard Mater 172(2–3):1560–1572. doi:10.1016/j.jhazmat.2009.08.028

    Article  Google Scholar 

  11. Özkaya B (2006) Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J Hazard Mater 129:158–163. doi:10.1016/j.jhazmat.2005.08.025

    Article  Google Scholar 

  12. Hameed B, Rahman A (2008) Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J Hazard Mater 160:576–581. doi:10.1016/j.jhazmat.2008.03.028

    Article  Google Scholar 

  13. Liu Q-S, Zheng T, Wang P, Jiang J-P, Li N (2010) Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem Eng J 157(2–3):348–356. doi:10.1016/j.cej.2009.11.013

    Article  Google Scholar 

  14. Zeng X, Fan Y, Wu G, Wang C, Shi R (2009) Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent. J Hazard Mater 169:1022–1028. doi:10.1016/j.jhazmat.2009.04.044

    Article  Google Scholar 

  15. Ming ZW, Long CJ, Cai PB, Xing ZQ, Zhang B (2006) Synergistic adsorption of phenol from aqueous solution onto polymeric adsorbents. J Hazard Mater 128:123–129. doi:10.1016/j.jhazmat.2005.03.036

    Article  Google Scholar 

  16. An F, Gao B, Feng X (2009) Adsorption mechanism and property of novel composite material PMAA/SiO2 towards phenol. Chem Eng J 153:108–113. doi:10.1016/j.cej.2009.02.040

    Article  Google Scholar 

  17. Dias JM, Alvim-Ferraz MC, Almeida MF, Rivera-Utrilla J, Sánchez-Polo M (2007) Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manage 85:833–846. doi:10.1016/j.jenvman.2007.07.031

    Article  Google Scholar 

  18. Štandeker S, Novak Z, Knez Ž (2007) Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J Colloid Interface Sci 310:362–368. doi:10.1016/j.jcis.2007.02.021

    Article  Google Scholar 

  19. Lin S-H, Juang R-S (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J Environ Manage 90:1336–1349. doi:10.1016/j.jenvman.2008.09.003

    Article  Google Scholar 

  20. Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118. doi:10.1016/j.cej.2016.04.098

    Article  Google Scholar 

  21. Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica Aerogel: Synthesis and Applications. J Nanomater 2010:1–11. doi:10.1155/2010/409310

    Article  Google Scholar 

  22. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels Handbook (Advances in Sol-Gel Derived Materials and Technologies). Springer. doi:10.1007/978-1-4419-7589-8

  23. Durães L, Ochoa M, Rocha N, Patrício R, Duarte N, Redondo V, Portugal A (2012) Effect of the drying conditions on the microstructure of silica based xerogels and aerogels. J Nanosci Nanotechnol 12(8):6828–6834. doi:10.1166/jnn.2012.4560

    Article  Google Scholar 

  24. Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199(1–3):10–26. doi:10.1016/j.jmatprotec.2007.10.060

    Article  Google Scholar 

  25. Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74. doi:10.1016/j.jnoncrysol.2013.10.017

    Article  Google Scholar 

  26. Sani S, Muhid MNM, Hamdan H (2011) Design, synthesis and activity study of tyrosinase encapsulated silica aerogel (TESA) biosensor for phenol removal in aqueous solution. J Sol–Gel Sci Technol 59:7–18. doi:10.1007/s10971-011-2454-3

    Article  Google Scholar 

  27. Perdigoto M, Martins R, Rocha N, Quina M, Gando-Ferreira L, Patrício R, Durães L (2012) Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions. J Colloid Interface Sci 380:134–140. doi:10.1016/j.jcis.2012.04.062

    Article  Google Scholar 

  28. Wu Z, Ahn I-S, Lee C-H, Kim J-H, Shul YG, Lee K (2004a) Enhancing the organic dye adsorption on porous xerogels. Colloids Surf A: Physicochem Eng Aspects 240:157–164. doi:10.1016/j.colsurfa.2004.04.045

    Article  Google Scholar 

  29. Wu Z, Joo H, Ahn I-S, Haam S, Kim J-H, Lee K (2004b) Organic dye adsorption on mesoporous hybrid gels. Chem Eng J 102:277–282. doi:10.1016/j.cej.2004.05.008

    Article  Google Scholar 

  30. Wu Z, You L, Xiang H, Jiang Y (2006) Comparison of dye adsorption by mesoporous hybrid gels: Understanding the interactions between dyes and gel surfaces. J Colloid Interface Sci 303:346–352. doi:10.1016/j.jcis.2006.08.018

    Article  Google Scholar 

  31. You L, Wu Z, Kim T, Lee K (2006) Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane. J Colloid Interface Sci 300:526–535. doi:10.1016/j.jcis.2006.04.039

    Article  Google Scholar 

  32. Haghbeen K, Legge RL (2009) Adsorption of phenolic compounds on some hybrid xerogels. Chem Eng J 150:1–7. doi:10.1016/j.cej.2008.11.036

    Article  Google Scholar 

  33. Wei W, Zhang J, Wu L, Qin G (2012) Effects of preparation conditions on characters of hydrophobic silica granular aerogel and its applications. Adv Mater Res 600:190–193. doi:10.4028/www.scientific.net/AMR.600.190

    Article  Google Scholar 

  34. Qin G, Yao Y, Wei W, Zhang T (2013) Preparation of hydrophobic granular silica aerogels and adsorption of phenol from water. Appl Surf Sci 280:806–811. doi:10.1016/j.apsusc.2013.05.066

    Article  Google Scholar 

  35. Firoozmandan M, Moghaddas J, Yasrebi N (2016) Performance of water glass-based silica aerogel for adsorption of phenol from aqueous solution. J Sol-Gel Sci Technol 79:67–75. doi:10.1007/s10971-016-4007-2

    Article  Google Scholar 

  36. An F, Gao B (2008) Adsorption of phenol on a novel adsorption material PEI/SiO2. J Hazard Mater 152:1186–1191. doi:10.1016/j.jhazmat.2007.07.102

    Article  Google Scholar 

  37. An F, Gao B, Feng X (2008) Adsorption and recognizing ability of molecular imprinted polymer MIP-PEI/SiO2 towards phenol. J Hazard Mater 157:286–292. doi:10.1016/j.jhazmat.2007.12.095

    Article  Google Scholar 

  38. Lide DR (Ed) (2005) CRC handbook of chemistry and physics, 85th edn.. CRC Press, Boca Raton, FL

    Google Scholar 

  39. USEPA (1996) Product properties test guidelines: OPPTS 830.7570—partition coefficient (n-octanol/water), estimation by liquid chromatography. EPA 712-C-96-040

  40. Valente AJM, Soderman O (2014) The formation of host–guest complexes between surfactants and cyclodextrins. Adv Colloid Interface Sci 205:156–176. doi:10.1016/j.cis.2013.08.001

    Article  Google Scholar 

  41. Buvári A, Barcza L (1988) Complex formation of phenol, aniline, and their nitro derivatives with β-cyclodextrin. J Chem Soc Perkin Trans 2(4):543–545. doi:10.1039/P29880000543

    Article  Google Scholar 

  42. Faraji H, Husain SW, Helalizadeh M (2011) β-Cyclodextrin-bonded silica particles as novel sorbent for stir bar sorptive extraction of phenolic compounds. J Chromatogr Sci 49(6):482–487. doi:10.1093/chrsci/49.6.482

    Article  Google Scholar 

  43. Faraji H, Husain SW, Helalizadeh M (2012) Determination of phenolic compounds in environmental water samples after solid-phase extraction with β-cyclodextrin-bonded silica particles coupled with a novel liquid-phase microextraction followed by gas chromatography-mass spectrometry. J Sep Sci 35(1):107–113. doi:10.1002/jssc.201100398

    Article  Google Scholar 

  44. Matias T, Marques J, Quina MJ, Gando-Ferreira L, Valente AJ, Portugal A, Durães L (2015) Silica-based aerogels as adsorbents for phenol-derivative compounds. Colloids Surf A 480:260–269. doi:10.1016/j.colsurfa.2015.01.074

    Article  Google Scholar 

  45. Vareda JP, Valente AJM, Durães L (2016) Heavy metals in iberian soils: removal by current adsorbents/Amendments and prospective for aerogels. Adv Colloid Interface Sci 237:28–42. doi:10.1016/j.cis.2016.08.009

    Article  Google Scholar 

  46. Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R”Si(OR’)3 precursors. J Mol Struct 919(1–3):140–145. doi:10.1016/j.molstruc.2008.08.025

    Article  Google Scholar 

  47. Becker H, Berger W, Domschke G, Fanghänel E, Faust J, Fischer M, Gentz F, Gewald K, Gluch R, Mayer R, Müller K, Pavel D, Schmidt H, Schollberg K, Schwetlick K, Seiler E, Zeppenfeld G (1997) Organikum, 2nd edn. Calouste Gulbenkian Foundation, Lisbon

    Google Scholar 

  48. Yan H, Yuanhao W, Hongxing Y (2017) TEOS/silane coupling agent composed double layers structure: a novel super-hydrophilic coating with controllable water contact angle value. Applied Energy 185:2209–2216. doi:10.1016/j.apenergy.2015.09.097

    Article  Google Scholar 

  49. Patankar NA (2003) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19:1249–1253

    Article  Google Scholar 

  50. Bertrand GL, Faulkner Jr. JR, Han SM, Armstrong DW (1989) Substituent effects on the binding of phenols to cyclodextrins in aqueous solution. J Phys Chem 93(18):6863–6870. doi:10.1021/j100355a057

    Article  Google Scholar 

Download references

Acknowledgements

Work developed under the project “CleanOlGel—Functionalization of silica based aerogels for treatment of wastewater with phenolic compounds”, Contract No. 34078, by the consortium Active Aerogels/University of Coimbra/Ventilaqua, funded by ADI, through the Promotion of Research and Technological Development System of QREN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa Durães.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matias, T., Marques, J., Conceição, F. et al. Towards improved adsorption of phenolic compounds by surface chemistry tailoring of silica aerogels. J Sol-Gel Sci Technol 84, 409–421 (2017). https://doi.org/10.1007/s10971-017-4373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4373-4

Keywords

Navigation