Skip to main content
Log in

The three-dimensional structure of flexible resorcinol-formaldehyde aerogels investigated by means of holotomography

  • Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Organic aerogels based on resorcinol-formaldehyde gels display remarkable properties due to their pronounced nanoporosity. Therefore, studies towards the understanding of their structure-property-relationship are of high value for the design of improved materials. X-ray tomography is a technique that has been used for the structural elucidation of porous materials, but so far no highly resolved three-dimensional structures of resorcinol-formaldehyde gels have been obtained under the classical absorption-based experimental X-ray setup. This paper reports on the successful analysis of a superflexible resorcinol-formaldehyde aerogel using zoom holotomography that yielded images with an unprecedented resolution in the sub-micrometer range. The preparation of suitable powder from monolithic superflexible resorcinol-formaldehyde, the experimental conditions for tomography, and data-processing to obtain a 3D-image of the dried gel sample are described. Macropores above ca. 75 nm could be identified and visualized. They were shown to adopt almost spherical shape and to display a low connectivity. A quantitative analysis of the pore space revealed that most of the identified pores are small macropores (diameter < 0.5 µm), yet most pore volume is located in larger macropores of 1–4 µm diameter.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aegerter MA, Leventis N, Koebel MM (eds) (2011) Aerogels handbook. Springer, New York, NY

    Google Scholar 

  2. Lu X, Arduini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW (1992) Thermal conductivity of monolithic organic aerogels. Science 255(5047):971–972

    Article  Google Scholar 

  3. Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non Cryst Solids 125(1–2):67–75

    Article  Google Scholar 

  4. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal conductivity of organic aerogels. J Non Cryst Solids 188(3):226–234

    Article  Google Scholar 

  5. Reichenauer G (2011) Structural characterization of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, NY, p 449–498

    Chapter  Google Scholar 

  6. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380

    Article  Google Scholar 

  7. Fu B, Luo H, Wang F, Churu G, Chu KT, Hanan JC, Sotiriou-Leventis C, Leventis N, Lu H (2011) Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. J Non Cryst Solids 357(10):2063–2074

    Article  Google Scholar 

  8. Rege A, Schestakow M, Karadagli I, Ratke L, Itskov M (2016) Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter 12(34):7079–7088

    Article  Google Scholar 

  9. Reichenauer G, Scherer GW (2000) Nitrogen adsorption in compliant materials. J Non Cryst Solids 277(2–3):162–172

    Article  Google Scholar 

  10. Landers J, Gor GY, Neimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A 437:3–32

    Article  Google Scholar 

  11. Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23(1):9–19

    Article  Google Scholar 

  12. Johnston GP, Smith DM, Melendez I, Hurd AJ (1990) Compression effects in mercury porosimetry. Powder Technol 61(3):289–294

    Article  Google Scholar 

  13. Scherer GW, Smith DM, Stein D (1995) Deformation of aerogels during characterization. J Non Cryst Solids 186:309–315

    Article  Google Scholar 

  14. Holzer L, Indutnyi F, Gasser PH, Münch B, Wegmann M (2004) Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. J Microsc 216(1):84–95

    Article  Google Scholar 

  15. Wilson JR, Kobsiriphat W, Mendoza R, Chen H-Y, Hiller JM, Miller DJ, Thornton K, Voorhees PW, Adler SB, Barnett SA (2006) Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 5(7):541–544

    Article  Google Scholar 

  16. Ziegler C, Thiele S, Zengerle R (2011) Direct three-dimensional reconstruction of a nanoporous catalyst layer for a polymer electrolyte fuel cell. J Power Sources 196(4):2094–2097

    Article  Google Scholar 

  17. Balach J, Miguel F, Soldera F, Acevedo DF, Mücklich F, Barbero CA (2012) A direct and quantitative image of the internal nanostructure of nonordered porous monolithic carbon using FIB nanotomography. J Microsc 246(3):274–278

    Article  Google Scholar 

  18. Balach J, Soldera F, Acevedo DF, Mücklich F, Barbero CA (2013) A direct and quantitative three-dimensional reconstruction of the internal structure of disordered mesoporous carbon with tailored pore size. Microsc Microanal 19(3):745–750

    Article  Google Scholar 

  19. Maire E (2012) X-ray tomography applied to the characterization of highly porous materials. Annu Rev Mater Res 42(1):163–178

    Article  Google Scholar 

  20. Haghgoo M, Plougonven E, Yousefi AA, Pirard J-P, Léonard A, Job N (2012) Use of X-ray microtomography to study the homogeneity of carbon nanotube aqueous suspensions and carbon nanotube/polymer composites. Carbon 50(4):1703–1706

    Article  Google Scholar 

  21. Laskowski J (2016) Synthese und eigenschaften von Aerogel-Aerogel-Verbundwerkstoffen. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen

  22. Mokso R, Cloetens P, Maire E, Ludwig W, Buffière J-Y (2007) Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics. Appl Phys Lett 90(14):144104

    Article  Google Scholar 

  23. Kenesei P, Biermann H, Borbély A (2005) Structure–property relationship in particle reinforced metal–matrix composites based on holotomography. Scr Mater 53(7):787–791

    Article  Google Scholar 

  24. Girardin E, Renghini C, Dyson J, Calbucci V, Moroncini F, Albertini G (2011) Characterization of porosity in a laser sintered MMCp using X-ray synchrotron phase contrast microtomography. Mater Sci Appl 2:1322–1330

    Google Scholar 

  25. Sar J, Celikbilek O, Villanova J, Dessemond L, Martin CL, Djurado E (2015) Three dimensional analysis of Ce0.9Gd0.1O1.95–La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen electrode for solid oxide cells. J Eur Ceram Soc 35(16):4497–4505

    Article  Google Scholar 

  26. Hubert M, Laurencin J, Cloetens P, da Silva JC, Lefebvre-Joud F, Bleuet P, Nakajo A, Siebert E (2016) Role of microstructure on electrode operating mechanisms for mixed ionic electronic conductors: from synchrotron-based 3D reconstruction to electrochemical modeling. Solid State Ion 294:90–107

    Article  Google Scholar 

  27. Cloetens P, Mache R, Schlenker M, Lerbs-Mache S (2006) Quantitative phase tomography of arabidopsis seeds reveals intercellular void network. Proc Natl Acad Sci USA 103(39):14626–14630

    Article  Google Scholar 

  28. Schwan M, Tannert R, Ratke L (2016) New soft and spongy resorcinol–formaldehyde aerogels. J Supercrit Fluids 107:201–208

    Article  Google Scholar 

  29. Pekala RW, Kong FM (1989) A Synthetic route to organic aerogels - mechanism, structure, and properties. J Phys 50(C-4):C433–C440

    Google Scholar 

  30. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  Google Scholar 

  31. Heyn E (1903) Short reports from the metallurgical laboratory of the royal mechanical and testing institute of Charlottenburg. Metallographist 6:39–70

    Google Scholar 

  32. Zabler S, Cloetens P, Guigay J-P, Baruchel J, Schlenker M (2005) Optimization of phase contrast imaging using hard x rays. Rev Sci Instrum 76(7):073705

    Article  Google Scholar 

  33. Labiche J-C, Mathon O, Pascarelli S, Newton MA, Ferre GG, Curfs C, Vaughan G, Homs A, Carreiras DF (2007) Invited article: the fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev Sci Instrum 78(9):091301

    Article  Google Scholar 

  34. Cloetens P, Ludwig W, Baruchel J, Van Dyck D, Van Landuyt J, Guigay JP, Schlenker M (1999) Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl Phys Lett 75(19):2912–2914

    Article  Google Scholar 

  35. Bracewell RN, Riddle AC (1967) Inversion of fan-beam scans in radio astronomy. Astron J 150(2):427–434

    Article  Google Scholar 

  36. Piedboeuf M-LC, Léonard AF, Traina K, Job N (2015) Influence of the textural parameters of resorcinol–formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling. Colloids Surf A 471:124–132

    Article  Google Scholar 

  37. Tannert R, Schwan M, Ratke L (2015) Reduction of shrinkage and brittleness for resorcinol-formaldehyde aerogels by means of a pH-controlled sol–gel process. J Supercrit Fluids 106:57–61

    Article  Google Scholar 

  38. Moreno-Castilla C, Carrasco-Marín F, Dawidziuk M (2012) Carbon aerogel-supported Pt catalysts for the hydrogenolysis and isomerization of n-Butane: influence of the carbonization temperature of the support and Pt particle size. Catalysts 2(4):422

    Article  Google Scholar 

  39. Wickenheisser M, Herbst A, Tannert R, Milow B, Janiak C (2015) Hierarchical MOF-xerogel monolith composites from embedding MIL-100(Fe,Cr) and MIL-101(Cr) in resorcinol-formaldehyde xerogels for water adsorption applications. Microporous Mesoporous Mater 215:143–153

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Benjamin Ignatzi for the production and characterization of powders and Guillermo Requena and Galina Kasperovich for assistance and computer resources provided during preliminary image analysis. We thank the European Synchrotron Radiation Facility for access to synchrotron radiation facilities at ID16A beamline (proposal SC4154 granted to RT, MS, AR, BM, M I, and LR). Financial support from the German Aerospace Center (program “Terrestrial vehicles”, project “Next Generation Car” for RT, MS, BM, and LR) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Tannert.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tannert, R., Schwan, M., Rege, A. et al. The three-dimensional structure of flexible resorcinol-formaldehyde aerogels investigated by means of holotomography. J Sol-Gel Sci Technol 84, 391–399 (2017). https://doi.org/10.1007/s10971-017-4363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4363-6

Keywords

Navigation