Skip to main content
Log in

A systematic study of the hydration and drying process of silica xerogels using Cu(II) EPR spectroscopy

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The influence of the hydration and drying process on the line shape and signal intensity of the electron paramagnetic resonance spectra recorded from Cu(II) ions present in silica xerogels calcined at various temperatures was investigated. The experimental Cu(II) electron paramagnetic resonance spectra were found to consist of a superimposition of three individual subspectra (Γ1, Γ2 and Φ), which reflect different local environments in which the Cu(II) ions were located. The results demonstrate that: (i) Within experimental error, the spin Hamiltonian parameters of each individual subspectrum remain, in the course of the experiments, identical. (ii) The hydration process changed the relative contribution from the individual subspectra (Γ1, Γ2 and Φsignificantly, and increased the overall electron paramagnetic resonance signal intensity by a factor of more than ten, as compared with the non-hydrated silica xerogels. (iii) On re-drying the hydrated silica xerogel samples, the original line shape and original signal intensity values were restored. Thus, measurement of the relative contributions of the individual subspectra can be used as a sensitive method with which to monitor the hydration/drying process in silica xerogels. As a caveat, we conclude that the influence of the hydration/drying process should be taken into account in the interpretation of Cu(II) electron paramagnetic resonance spectra of calcined silica xerogel samples, which provides the real novelty of the present report.

Graphical Abstract

Relative contribution of subspectra (Γ1, Γ2 and Φ) to Cu(II) EPR spectra of silica xerogels calcined at the temperatures quoted and then hydrated for 15 min and for 3 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brinker CJ, Scherer GW (1990) Sol-gel science. Academic, New York, NY

    Google Scholar 

  2. Hench LL, West JK (1990) Chem Rev 90:33–72

    Article  Google Scholar 

  3. Hench LL, Ulrich DR (1984) Ultrastructure processing of ceramics, glasses and composites. Wiley, New York, NY

    Google Scholar 

  4. Wong J, Angel C (1976) Glass structure by spectroscopy. Marcel Dekker, Basel

    Google Scholar 

  5. Griscom DL (1990) Glass Science Technology. Academic, Boston

    Google Scholar 

  6. Tominaga H, Ono Y, Keii T (1975) J Catal 40:197–202

    Article  Google Scholar 

  7. Darab JG, MacCrone RK (1987) J Non Cryst Solids 95, 96:1203–1210

    Article  Google Scholar 

  8. Darab JG, MacCrone RK (1991) Phys Chem Glasses 32:91–101

    Google Scholar 

  9. Ikoma S, Tanako S, Nomoto E, Yokoi H (1989) J Non Cryst Solids 113:130–136

    Article  Google Scholar 

  10. Klonkowski AM, Schlaepfer CW (1991) J Non Cryst Solids 129:101–108

    Article  Google Scholar 

  11. Klonkowski AM, Schlaepfer CW (1992) J Non Cryst Solids 149:189–195

    Article  Google Scholar 

  12. Klonkowski AM, Koehler K, Schlaepfer CW (1993) J Mater Chem 3:105–110

    Article  Google Scholar 

  13. Shames A, Lev O, Iosofzon B (1993) J Non Cryst Solids 163:105–114

    Article  Google Scholar 

  14. Liška M, Hulínová H, Mazur M, Pelikán P (1992) Glass & Ceramic [Sklar & Keramik] 42:247–250

    Google Scholar 

  15. Hulínová H, Liška M, Pelikán P, Mazur M (1992) Glass & Ceramic [Sklar & Keramik] 42:251–252

  16. Pelikán P, Mazur M, Liška M, Šimurka P (1995) Curr Trends Coord Chem 2:31–36

    Google Scholar 

  17. Mazur M, Valko M, Klement R, Pelikán P (1997) Prog Coord Organomet Chem 3:285–290

    Google Scholar 

  18. Mazur M, Moncol J, Kleinová M, Stachová P, Valko M (2006) Phys Chem Glasses 47:278–282

    Google Scholar 

  19. Bogomolova LD, Pavlushkina TK, Morozova IV (2006) Glass Ceram 63:254–258

    Article  Google Scholar 

  20. Kledzik K, Jamrógiewicz M, Gwiazda M, Wagner-Wysiecka E, Jezierska J, Biernat JF, Klonkowski AM (2007) Mater Sci Pol 25:1041–1051

    Google Scholar 

  21. Vignali F, Predieri G, Feci E, Palanti S, Baratto MC, Basosi R, Callone E, Müller K (2011) J Solgel Sci Technol 60:445–456

    Article  Google Scholar 

  22. Sivasubramanian G, Shanmugam C, Parameswaran VR (2013) J Porous Mater 20:417–430

    Article  Google Scholar 

  23. Mazur M, Husáriková L, Valko M, Rhodes CJ (2016) Appl Magn Reson 47:1–12

    Article  Google Scholar 

  24. Mazur M, Švorec J, Kleinová M, Valko M (2003) Prog Coord Bioinorg Chem 6:317–322

    Google Scholar 

  25. Breyer T, Breitbarth FW, Vogelsberger W (2003) J Colloid Interface Sci 266:153–159

    Article  Google Scholar 

  26. Liška M, Mazur M, Hulínová H, Pelikán P, Valko M, Nerád I (1995) Ceram Silic 39:69–72

    Google Scholar 

  27. Mazur M, Valko M, Klement R, Morris H (1996) Anal Chim Acta 333:249–252

    Article  Google Scholar 

  28. Mazur M, Valko M, Morris H, Klement R (1996) Anal Chim Acta 333:253–265

    Google Scholar 

  29. Thiele H, Etstling J, Such P, Hoefer P (1992) WinEPR. Bruker Analytic Gmb, Berlin

    Google Scholar 

  30. Weber RT (1995) WinEPR SimFonia. EPR Division, Bruker Instr. Inc, Billerica, MA

    Google Scholar 

  31. Pelikán P, Liška M, Valko M, Mazur M (1996) J Magn Reson 122:9–15

    Article  Google Scholar 

  32. Shames A, Lev O, Iosefzon-Kuyavskaya B (1994) J Non Cryst Solids 175:14–20

    Article  Google Scholar 

  33. Dyrek K, Che M (1997) Chem Rev 97:305–331

    Article  Google Scholar 

  34. Dyrek K, Adamski A, Sojka Z (1998) Spectrochem Acta A 54:2337–2348

    Article  Google Scholar 

  35. Mazur M, Valko M (2002) Phys Chem Glass 43:237–240

    Google Scholar 

  36. Mazur M, Kleinová M, Moncol J, Stachová P, Valko M, Telser J (2006) J Non Cryst Solids 352:3158–3165

    Article  Google Scholar 

  37. Mazur M, Husáriková L, Rhodes CJ, Valko M (2015) J Solgel Sci Technol 76:110–119

    Article  Google Scholar 

  38. Dexmer J, Leroy CM, Binet L, Heresanu V, Launois P, Steunou N, Coulon C, Maquet J, Brun N, Livage J, Backov R (2008) Chem Mater 20:5541–5549

    Article  Google Scholar 

  39. Riou D, Roubeau O, Bouhedja L, Livage J, Ferey G (2000) Chem Mater 12:67–72

    Article  Google Scholar 

  40. Kahn A, Livage J, Collongues R (1974) Phys Status Solidi 26:175–179

    Article  Google Scholar 

  41. Nedelec JM, Bouazaoui M, Turrell S (1999) Phys Chem Glass 40:264–268

    Google Scholar 

  42. Martini G, Bassetti V (1979) J Phys Chem 89:2505–2511

    Article  Google Scholar 

  43. Martini G, Bassetti V (1979) J Phys Chem 89:2511–2515

  44. Bassetti V, Burlamacchi L, Martini G (1979) J Phys Chem 101:5471–5477

    Google Scholar 

  45. Kawashima M, Matsu KJ (1999) Ceram Soc Jpn 107:282–284

    Article  Google Scholar 

  46. Kawashima M, Oda N, Uchida Y, Matsu K (2000) Lumin J 87–89:685–687

  47. Kawashima M, Oda N, Uchida Y, Matsu KJ (2002) Ceram Soc Jpn 110:507–511

    Article  Google Scholar 

  48. Abiddi N, Deroide B, Zanchetta JV, Bourret D, Elmkami H, Rumori P (1996) Phys Chem Glasses 37:149–154

    Google Scholar 

  49. Abiddi N, Deroide B, Zanchetta JV (1997) Nucleonika 42:505–514

    Google Scholar 

  50. Rumori P, Deroide B, Abiddi N, Zanchetta JV (1997) J Non Cryst Solids 221:59–69

    Article  Google Scholar 

  51. Klonkowski AM, Widernik T, Grobelna B, Jóźwiak WK, Prog aH, Szubiakiewicz E (2001) J Solgel Sci Technol 20:161–180

    Article  Google Scholar 

  52. Klonkowski AM, Grobelna B, Widernik T, Jankowska-Frydel A, Mozgawa W (1999) Langmuir 15:5814–5819

    Article  Google Scholar 

  53. Klonkowski AM, Koehler K, Widernik T, Grobelna B (1996) J Mater Chem 6:579–584

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contact No. APVV-15-0053 and by the Scientific Grant Agency of the Slovak Republic (Projects VEGA 1/0041/15 and VEGA 1/0686/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Mazur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazur, M., Valko, M. & Rhodes, C.J. A systematic study of the hydration and drying process of silica xerogels using Cu(II) EPR spectroscopy. J Sol-Gel Sci Technol 82, 855–861 (2017). https://doi.org/10.1007/s10971-017-4357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4357-4

Keywords

Navigation