Skip to main content

Correlation between the structure and the anticorrosion barrier properties of hybrid sol–gel coatings: application to the protection of AA2024-T3 alloys

Abstract

Hybrid sol–gel materials have been extensively studied as viable alternatives to toxic chromate (VI)-based coatings for the corrosion protection of AA2024-T3 in the aerospace industry, due to the wide range of available chemistries they offer and the tremendous development potential of innovative functional coatings. However, so far, little work has been performed in identifying the effect of the employed chemistries on the structure and anticorrosion properties of the coatings. This work proposes to contribute to a better understanding of the relationship existing between the structure, morphology and anticorrosion properties of hybrid sol–gel coatings deposited on AA2024-T3 aluminium surfaces, the most widely used alloy in the aerospace industry. The sol–gels are prepared employing two hybrid precursors; an organosilane, 3-trimethoxysilylpropylmethacrylate, and a zirconium complex prepared from the chelation of zirconium n-propoxide, and methacrylic acid. The structure of the hybrid sol–gel formulation is modified by altering the concentration of the transition metal complex. The structure and morphology of the coatings are characterised by dynamic light scattering, fourier transform infrared spectroscopy, silicon nuclear magnetic resonance spectroscopy, differential scanning calorimetry, scanning electron microscopy, atomic-force microscopy and the anticorrosion barrier properties characterised by electrochemical impedance spectroscopy and neutral salt-spray. It is found that the transition metal concentration affected the morphology and structure, as well as the anticorrosion performances of the hybrid sol–gel coatings. A direct correlation between the morphology of the coatings and their final anticorrosion barrier properties is demonstrated, and the optimum material amongst this series is determined to be comprised of a concentration of between 20 and 30% of transition metal.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. International Agency for Research on Cancer, IARC monograph: chromium (VI) compounds. Vol 100C, 2012, 147–168

  2. Varma PCR, Colreavy J, Cassidy J, Oubaha M, McDonagh C, duffy B (2010) Thin Solid Films 518:5753–5761

    Article  Google Scholar 

  3. Alinejad S, Naderi R, Mahdavian M (2016) Prog Org Coat 101:142–148

    Article  Google Scholar 

  4. Ramezanzadeh B, Haeri Z, Ramezanzadeh M (2016) Chem Eng J 303:511–528

    Article  Google Scholar 

  5. Dimitriev Y, Ivanova Y, Iordanova R (2008) History of sol-gel science and technology. J Univ Chem Technol Metall 43(2):181–192

    Google Scholar 

  6. Twite RL, Bierwagen GP (1998) Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog Org Coat 33(2):91–100

    Article  Google Scholar 

  7. Hench LL, West JK (1990) The sol–gel process. Chem Rev 90(1):33–72

    Article  Google Scholar 

  8. Brinker C, Scherer G (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Adv Mater 3(10):912

    Google Scholar 

  9. Lakshmi RV, Aruna ST, Sampath S (2017) Appl Surf Sci 393:397–404

    Article  Google Scholar 

  10. Balaji J, Sethuraman MG (2016) Prog Org Coat 99:463–473

    Article  Google Scholar 

  11. Recloux I, Gonzalez-Garcia Y, Druart M-E, Khelifa F, Dubois P, Mol JMC, Olivier M-G (2016) Surf Coat Technol 303:352–361

    Article  Google Scholar 

  12. Chrusciel JJ, Lesniak E (2015) Prog Polym Sci 41:67–121

    Article  Google Scholar 

  13. Rodič P, Mertelj A, Borovšak M, Benčan A, Mihailović D, Malič B, Milošev I (2016) Surf Coat Technol 286:388–396

    Article  Google Scholar 

  14. Yu F, Akid R (2016) Corrosion protection of AA2024-T3 alloy by modified hybrid titania-containing sol–gel coatings. Prog Org Coat doi:10.1016/j.porgcoat.2016.09.022

  15. Suzana AF, Ferreira EA, Benedetti AV, Carvalho HWP, Santilli CV, Pulcinelli SH (2016) Surf Coat Technol 299:71–80

    Article  Google Scholar 

  16. Kunst SR, Cardoso HRP, Oliveira CT, Santana JA, Sarmento VHV, Muller IL, Malfatti CF (2014) Appl Surf Sci 298:1–11

    Article  Google Scholar 

  17. Vargas Harb S, Machado Cerrutti B, Helena Pulcinelli S, Valentim Santilli C, Hammer P (2015) Surf Coat Technol 275:9–16

    Article  Google Scholar 

  18. Qian M, Mcintosh Soutar A, Hui Tan X, Ting Zeng X, Wijesinghe SL (2009) Thin Solid Films 517:5237–5242

    Article  Google Scholar 

  19. Echeverría M, Abreu CM, Lau K, Echeverría CA (2016) Prog Org Coat 92:29–43

    Article  Google Scholar 

  20. Figueira RB, Silva CJR, Pereira EV (2015) J Coat Technol Res 12(1):1–35

    Article  Google Scholar 

  21. Oubaha M, Smaїhi M, Etienne P, Coudray P, Moreau Y (2003) J Non-Cryst Solids 318(3):305

    Article  Google Scholar 

  22. Copperwhite R, O’Sullivan M, Boothman C, Gorin A, McDonagh C, Oubaha M (2011) Microfluid Nanofluid 11(3):283

    Article  Google Scholar 

  23. Elvira MR, Mazo MA, Tamayo A, Rubio F, Rubio J, Luis Oteo J (2013) J Chem Eng 7:120–131

    Google Scholar 

  24. Pickup DM, Mountjoy G, Wallidge GW, Newport RJ, Smith ME (1999) Phys Chem Chem Phys 1:2527

    Article  Google Scholar 

  25. Varma PCR, Colreavy J, Cassidy J, Oubaha M, Duffy B, McDonagh C (2009) Prog Org Coat 66:406

    Article  Google Scholar 

  26. Weihua Z, Gaoyang Z, Zhiming C (2003) Mater Sci Eng B 99:168

    Article  Google Scholar 

  27. Babonneau F, Maquet J (2000) Polyhedron 19(3):315–322

    Article  Google Scholar 

  28. Hayashi E, Shimokawa T (2016) Microporous Mesoporous Mater 219:178–185

    Article  Google Scholar 

  29. Baccile N, Babonneau F (2008) Microporous Mesoporous Mater 110:534–542

    Article  Google Scholar 

  30. Macdonald JR (Ed) (1987) Impedance spectroscopy emphasising solid materials and systems. Wiley/Interscience, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Oubaha.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cullen, M., Morshed, M., O’Sullivan, M. et al. Correlation between the structure and the anticorrosion barrier properties of hybrid sol–gel coatings: application to the protection of AA2024-T3 alloys. J Sol-Gel Sci Technol 82, 801–816 (2017). https://doi.org/10.1007/s10971-017-4349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4349-4

Keywords