Journal of Sol-Gel Science and Technology

, Volume 82, Issue 3, pp 682–691 | Cite as

Mechanical and tribological behavior of sol–gel TiO2–CdO films measured at the microscale levels

  • Francisco Javier Flores-Ruiz
  • Carolina Janani Diliegros-Godines
  • F. Alejandro Hernández-García
  • Rebeca Castanedo-Pérez
  • Gerardo Torres-Delgado
  • Esteban Broitman
Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • 251 Downloads

Abstract

In this work, we present a mechanical and tribological study at the microscale of sol–gel TiO2–CdO films, which are used in photocatalytic applications. The films were deposited as a good-quality polycrystalline material with majority of CdO or CdTiO3 phases depending on their Ti/Cd concentration ratios. Films with the majority of CdTiO3 phase presented the highest hardness and lowest plastic deformation during the indentation tests. The evolution of wear, friction coefficient, and roughness on the films was quantitatively studied by multiple-passes measurements on a depth-sensing instrumented indentation system. These measurements allowed us to observe the films’ wear mechanisms and correlate them with their microstructure and mechanical properties. To compare the crystal structure, mechanical properties and tribological behavior of these films, we also analyzed sol–gel CdO and TiO2 films deposited under similar conditions.

Graphical Abstract

Open image in new window

Keywords

CdTiO3 Sol–gel Mechanical properties Tribological behavior Scanning probe microscopy 

References

  1. 1.
    Diliegros-godines CJ, Flores-Ruiz FJ, Castanedo-Pérez R, et al. (2016) Mechanical and tribological properties of the oxide thin films obtained by sol–gel method. In: Klein L (ed) Handbook of sol–gel science and technology. Springer International Publishing, Switzerland, pp 1–14. doi:10.1007/978-3-319-19454-7_115-1
  2. 2.
    Chan CM, Cao GZ, Fong H et al. (2000) Nanoindentation and adhesion of sol–gel-derived hard coatings on polyester. J Mater Res 15:148–154. doi:10.1557/JMR.2000.0025 CrossRefGoogle Scholar
  3. 3.
    Chen X, Selloni A (2014) Introduction: titanium dioxide (TiO2) nanomaterials. Chem Rev 114:9281–9282. doi:10.1021/cr500422r CrossRefGoogle Scholar
  4. 4.
    Giannakopoulou T, Todorova N, Giannouri M et al. (2014) Optical and photocatalytic properties of composite TiO2/ZnO thin films. Catal Today 230:174–180. doi:10.1016/j.jallcom.2012.04.089 CrossRefGoogle Scholar
  5. 5.
    Islam S, Rahman RA, Othaman Z et al. (2013) Preparation and characterization of crack-free sol–gel based SiO2–TiO2 hybrid nanoparticle film. J Sol Gel Sci Technol 68:162–168. doi:10.1007/s10971-013-3147-x CrossRefGoogle Scholar
  6. 6.
    Wang Y, Wang SJ, Shu X et al. (2014) Preparation and property of sol-enhanced Ni–B–TiO2 nano-composite coatings. J Alloys Compd 617:472–478. doi:10.1016/j.jallcom.2014.08.060 CrossRefGoogle Scholar
  7. 7.
    Celik E, Keskin I, Kayatekin I et al. (2007) Al2O3–TiO2 thin films on glass substrate by sol-gel technique. Mater Charact 58:349–357. doi:10.1016/j.matchar.2006.05.015 CrossRefGoogle Scholar
  8. 8.
    Abd El-Lateef HM, Khalaf MM (2015) Corrosion resistance of ZrO2–TiO2 nanocomposite multilayer thin films coated on carbon steel in hydrochloric acid solution. Mater Charact 108:29–41. doi:10.1016/j.matchar.2015.08.010 CrossRefGoogle Scholar
  9. 9.
    Wang Y, Tay SL, Wei S et al. (2015) Microstructure and properties of sol-enhanced Ni–Co–TiO2 nano-composite coatings on mild steel. J Alloys Compd 649:222–228. doi:10.1016/j.jallcom.2015.07.147 CrossRefGoogle Scholar
  10. 10.
    de Anda Reyes ME, Torres Delgado G, Castanedo Pérez R et al. (2012) Optimization of the photocatalytic activity of CdO + CdTiO3 coupled oxide thin films obtained by sol–gel technique. J Photochem Photobiol A Chem 228:22–27. doi:10.1016/j.jphotochem.2011.11.007 CrossRefGoogle Scholar
  11. 11.
    Hernández-García FA, Torres-Delgado G, Castanedo-Pérez R, Zelaya-Ángel O (2015) Photodegradation of gaseous C6H6 using CdO + CdTiO3 and TiO2 thin films obtained by sol–gel technique. J Photochem Photobiol A Chem 310:52–59. doi:10.1016/j.jphotochem.2015.05.021 CrossRefGoogle Scholar
  12. 12.
    Zhang H, Banfield JF (2014) Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem Rev 114:9613–9644. doi:10.1021/cr500072j CrossRefGoogle Scholar
  13. 13.
    Sobczyk-Guzenda A, Pietrzyk B, Jakubowski W et al. (2013) Mechanical, photocatalytic and microbiological properties of titanium dioxide thin films synthesized with the sol–gel and low temperature plasma deposition techniques. Mater Res Bull 48:4022–4031. doi:10.1016/j.materresbull.2013.06.024 CrossRefGoogle Scholar
  14. 14.
    Fattakhova-Rohlfing D, Zaleska A, Bein T (2014) Three-dimensional titanium dioxide nanomaterials. Chem Rev 114:9487–9558. doi:10.1021/cr500201c CrossRefGoogle Scholar
  15. 15.
    Yaghoubi H, Taghavinia N, Alamdari EK, Volinsky AA (2010) Nanomechanical properties of TiO2 granular thin films. ACS Appl Mater Interfaces 2:2629–2636. doi:10.1021/am100455q CrossRefGoogle Scholar
  16. 16.
    Jia Q, Zhang Y, Wu Z, Zhang P (2007) Tribological properties of anatase TiO2 sol–gel films controlled by mutually soluble dopants. Tribol Lett 26:19–24. doi:10.1007/s11249-006-9177-6 CrossRefGoogle Scholar
  17. 17.
    Zhang W, Liu W, Wang C (2002) Tribological behavior of sol–gel TiO2 films on glass. Wear 253:377–384. doi:10.1016/S0043-1648(02)00139-4 CrossRefGoogle Scholar
  18. 18.
    Lackner JM, Waldhauser W, Ebner R et al. (2004) Pulsed laser deposition of titanium oxide coatings at room temperature-structural, mechanical and tribological properties. Surf Coat Technol 180–181:585–590. doi:10.1016/j.surfcoat.2003.10.099 CrossRefGoogle Scholar
  19. 19.
    Diliegros-Godines CJ, Flores-Ruiz FJ, Castanedo-Pérez R et al. (2015) Mechanical and tribological properties of CdO + SnO2 thin films prepared by sol–gel. J Sol Gel Sci Technol 74:114–120. doi:10.1007/s10971-014-3584-1 CrossRefGoogle Scholar
  20. 20.
    Broitman E, Flores-Ruiz FJ (2015) Novel method for in situ and simultaneous nanofriction and nanowear characterization of materials. J Vac Sci Technol A 33:43201. doi:10.1116/1.4921584 CrossRefGoogle Scholar
  21. 21.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20. doi:10.1557/jmr.2004.19.1.3 CrossRefGoogle Scholar
  22. 22.
    Broitman E (2017) Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribol Lett 65:23. doi:10.1007/s11249-016-0805-5 CrossRefGoogle Scholar
  23. 23.
    Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10:181–188. doi:10.2478/s11534-011-0096-2 Google Scholar
  24. 24.
    Gao F, He J, Wu E et al. (2003) Hardness of covalent crystals. Phys Rev Lett 91:15502. doi:10.1103/PhysRevLett.91.015502 CrossRefGoogle Scholar
  25. 25.
    Matthews A, Franklin S, Holmberg K (2007) Tribological coatings: contact mechanisms and selection. J Phys D 40:5463–5475. doi:10.1088/0022-3727/40/18/S07 CrossRefGoogle Scholar
  26. 26.
    Rivera-Tello CD, Broitman E, Flores-Ruiz FJ et al. (2016) Mechanical properties and tribological behavior at micro and macro-scale of WC/WCN/W hierarchical multilayer coatings. Tribol Int 101:194–203. doi:10.1016/j.triboint.2016.04.017 CrossRefGoogle Scholar
  27. 27.
    Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246:1–11. doi:10.1016/S0043-1648(00)00488-9 CrossRefGoogle Scholar
  28. 28.
    Charitidis C, Koumoulos E, Dragatogiannis D (2013) Nanotribological behavior of carbon based thin films: friction and lubricity mechanisms at the nanoscale. Lubricants 1:22–47. doi:10.3390/lubricants1020022 CrossRefGoogle Scholar
  29. 29.
    Flores-Ruiz FJ, Herrera-Gomez A, Camps E, Espinoza-Beltrán FJ (2015) Elastic heterogeneities at the nanoscale in DLC films grown by PLD. Mater Res Express 2:25009. doi:10.1088/2053-1591/2/2/025009 CrossRefGoogle Scholar
  30. 30.
    Fischer-Cripps AC (2011) Analysis of nanoindentation test data. In: Fischer-Cripps AC (ed) Nanoindentation. Springer, New York, NY, p 39–75CrossRefGoogle Scholar
  31. 31.
    Gaillard Y, Rico VJ, Jimenez-Pique E, González-Elipe AR (2009) Nanoindentation of TiO2 thin films with different microstructures. J Phys D 42:145305. doi:10.1088/0022-3727/42/14/145305 CrossRefGoogle Scholar
  32. 32.
    Queener CA, Smith TC, Mitchell WL (1965) Transient wear of machine parts. Wear 8:391–400. doi:10.1016/0043-1648(65)90170-5 CrossRefGoogle Scholar
  33. 33.
    Mortazavi V, Khonsari MM (2016) On the prediction of transient wear. J Tribol 138:41604. doi:10.1115/1.4032843 CrossRefGoogle Scholar
  34. 34.
    Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24:981. doi:10.1063/1.1721448 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Francisco Javier Flores-Ruiz
    • 1
  • Carolina Janani Diliegros-Godines
    • 2
  • F. Alejandro Hernández-García
    • 3
  • Rebeca Castanedo-Pérez
    • 3
  • Gerardo Torres-Delgado
    • 3
  • Esteban Broitman
    • 4
  1. 1.CONACYT-Instituto de FísicaBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Instituto de FísicaBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Centro de Investigación y de Estudios Avanzados del I.P.N.Unidad Querétaro. Lib. Norponiente 2000QuerétaroMexico
  4. 4.Thin Film Physics Division, IFMLinköping UniversityLinköpingSweden

Personalised recommendations