Skip to main content
Log in

Layer-by-layer construction of lipid bilayer on mesoporous silica nanoparticle to improve its water suspensibility and hemocompatibility

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous silica nanoparticle was expected to provide a versatile drug delivery platform with modification flexibility. To improve its hemocompatibility and realize controlled and/or targeting drug release, modification of bare mesoporous silica nanoparticles is essential. Herein, a novel method of coating mesoporous silica nanoparticles with lipid bilayers was developed. First, a homemade organosiloxane precursor was used for hydrophobic modification of mesoporous silica nanoparticles, then phospholipids (1,2-dihexadecanoyl-sn-glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)]) were coated by a filming-rehydration method based on hydrophobic interaction. The nanoparticle samples were characterized by transmission electron microscope, dynamic light scattering, nitrogen sorption, Fourier transform infrared, and thermal gravimetric analysis. Furthermore, the novel lipid bilayer coated mesoporous silica nanoparticles were compared with bare mesoporous silica nanoparticles in terms of suspension stability, drug release, hemolysis, and nonspecific protein absorption. Our data proved that lipid bilayer coated mesoporous silica nanoparticles had better hemobiocompatibility and controlled drug release properties than that of bare mesoporous silica nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  Google Scholar 

  2. Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, Ntziachristos V (2015) Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37:415–424

    Article  Google Scholar 

  3. Ryan SM, Brayden DJ (2014) Progress in the delivery of nanoparticle constructs: towards clinical translation. Curr Opin Pharmacol 18:120–128

    Article  Google Scholar 

  4. Maurer-Jones MA, Haynes CL (2012) Toward correlation in in vivo and in vitro nanotoxicology studies. J Law Med Ethics 40(4):795–801

    Article  Google Scholar 

  5. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373

    Article  Google Scholar 

  6. Berkland C, King M, Cox A, Kim K, Pack DW (2002) Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release 82(1):137–147

    Article  Google Scholar 

  7. Li Z-Z, Wen L-X, Shao L, Chen J-F (2004) Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Control Release 98(2):245–254

    Article  Google Scholar 

  8. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99(11):3181–3198

    Article  Google Scholar 

  9. Li S-D, Huang L (2008) Pharmacokinetics and Biodistribution of Nanoparticles. Mol Pharmaceut 5(4):496–504

    Article  Google Scholar 

  10. Xie J, Zhang Y, Yan C, Song L, Wen S, Zang F, Chen G, Ding Q, Yan C, Gu N (2014) High-performance PEGylated Mn–Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials 35(33):9126–9136

    Article  Google Scholar 

  11. Schroeder A, Sigal A, Turjeman K, Barenholz Y (2008) Using PEGylated nano-liposomes to target tissue invaded by a foreign body. J Drug Target 16(7-8):591–595

    Article  Google Scholar 

  12. Yokoyama M (2005) Drug targeting with nano-sized carrier systems. J Artif Organs 8(2):77–84

    Article  Google Scholar 

  13. Wang YC, Wang F, Sun TM, Wang J (2011) Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells. Bioconjug Chem 22(10):1939–1945

    Article  Google Scholar 

  14. Liu P, Shi B, Yue C, Gao G, Li P, Yi H, Li M, Wang B, Ma Y, Cai L (2013) Dextran-based redox-responsive doxorubicin prodrug micelles for overcoming multidrug resistance. Polym Chem 4(24):5793

    Article  Google Scholar 

  15. Lasic DD, Needham D (1995) The “Stealth” liposome: a prototypical biomaterial. Chem Rev 95(8):2601–2628

    Article  Google Scholar 

  16. Lasic DD, Papahadjopoulos D (1996) Liposomes and biopolymers in drug and gene delivery. Curr Opin Solid State Mater Sci 1(3):392–400

    Article  Google Scholar 

  17. Silindir M, Erdogan S, Ozer AY, Maia S (2012) Liposomes and their applications in molecular imaging. J Drug Target 20(5):401–415

    Article  Google Scholar 

  18. Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL (2015) Polymeric nanostructures for imaging and therapy. Chem Rev 115(19):10967–11011

    Article  Google Scholar 

  19. De Koker S, De Cock LJ, Rivera-Gil P, Parak WJ, Auzely Velty R, Vervaet C, Remon JP, Grooten J, De Geest BG (2011) Polymeric multilayer capsules delivering biotherapeutics. Adv Drug Deliv Rev 63(9):748–761

    Article  Google Scholar 

  20. Li Y, Maciel D, Rodrigues J, Shi X, Tomas H (2015) Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem Rev 115(16):8564–8608

    Article  Google Scholar 

  21. Colilla M, Gonzalez B, Vallet-Regi M (2013) Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomater Sci 1(2):114–134

    Article  Google Scholar 

  22. He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W, Guo L, Chen Y (2010) The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31(6):1085–1092

    Article  Google Scholar 

  23. Zhang Z, Zhou G, Chen B, Cai J, Chen J, Wu X, Qi W, Ji M (2016) Novel yolk–shell structured silica nanosphere with a movable silica-coated gold core. J Sol-Gel Sci Techn 77(2):516–520

    Article  Google Scholar 

  24. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441

    Article  Google Scholar 

  25. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin C-H, Park J-G, Kim J, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689

    Article  Google Scholar 

  26. Liu C, Guo J, Yang W, Hu J, Wang C, Fu S (2009) Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. J Mater Chem 19(27):4764–4764

    Article  Google Scholar 

  27. Zhao W, Gu J, Zhang L, Chen H, Shi J (2005) Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc 127(25):8916–8917

    Article  Google Scholar 

  28. Luo T, Huang P, Gao G, Shen G, Fu S, Cui D, Zhou C, Ren Q (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt express 19(18):17030–17039

    Article  Google Scholar 

  29. Shen S, Tang H, Zhang X, Ren J, Pang Z, Wang D, Gao H, Qian Y, Jiang X, Yang W (2013) Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 34(12):3150–3158

    Article  Google Scholar 

  30. Vivero-Escoto JL, Slowing II, Wu C-W, Lin VSY (2009) Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J Am Chem Soc 131(10):3462–3463

    Article  Google Scholar 

  31. Pirollo KF, Chang EH (2008) Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26(10):552–558

    Article  Google Scholar 

  32. Cauda V, Argyo C, Bein T (2010) Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 20(39):8693–8693

    Article  Google Scholar 

  33. Chen Z, Cui Z-m, Cao C-y, He W-d, Jiang L, Song W-g (2012) Temperature-responsive smart nanoreactors: poly(N-isopropylacrylamide)-coated Au@mesoporous-SiO2 hollow nanospheres. Langmuir 28(37):13452–13458

    Article  Google Scholar 

  34. Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VS (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126(41):13216–13217

    Article  Google Scholar 

  35. Mei X, Yang S, Chen D, Li N, Li H, Xu Q, Ge J, Lu J (2012) Light-triggered reversible assemblies of azobenzene-containing amphiphilic copolymer with β-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release. Chem Commun 48(80):10010–10012. (Cambridge, England)

    Article  Google Scholar 

  36. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134(13):5722–5725

    Article  Google Scholar 

  37. Liu J, Stace-Naughton A, Jiang X, Brinker CJ (2009) Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 131(4):1354–1355

    Article  Google Scholar 

  38. Li L, Zhou G, Cai J, Chen J, Wang P, Zhang T, Ji M, Gu N (2013) Preparation and characterization of a novel nanocomposite: silver nanoparticles decorated cerasome. J Sol-Gel Sci Techn 69(1):199–206

    Article  Google Scholar 

  39. Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125(15):4451–4459

    Article  Google Scholar 

  40. Lin YS, Abadeer N, Haynes CL (2011) Stability of small mesoporous silica nanoparticles in biological media. Chem Commun 47(1):532–534

    Article  Google Scholar 

  41. Wang LS, Wu LC, Lu SY, Chang LL, Teng IT, Yang CM, Ho JA (2010) Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. ACS nano 4(8):4371–4379

    Article  Google Scholar 

  42. Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ (2016) Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91:90–127

    Article  Google Scholar 

  43. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    Article  Google Scholar 

  44. Slowing II, Wu CW, Vivero-Escoto JL, Lin VS (2009) Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 5(1):57–62

    Article  Google Scholar 

  45. Kurrat R, Prenosil JE, Ramsden JJ (1997) Kinetics of human and bovine serum albumin adsorption at silica–titania surfaces. J Colloid Interface Sci 185(1):1–8

    Article  Google Scholar 

  46. Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci 162(1-2):87–106

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by National Key Basic Research Program of China (973 Program, 2013CB933904), National High-tech Research and Development Project (863 Project, 2013AA032205), Industry Project of Jiangsu Science-technology Support Plan (BE2013840), Science and Technology Development Program of Suzhou (ZXY201412).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Gu or Min Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Li, L., Xing, J. et al. Layer-by-layer construction of lipid bilayer on mesoporous silica nanoparticle to improve its water suspensibility and hemocompatibility. J Sol-Gel Sci Technol 82, 490–499 (2017). https://doi.org/10.1007/s10971-017-4330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4330-2

Keywords

Navigation