Skip to main content
Log in

Effect of Ca-doping on the electrical properties of La0.2Nd0.47Sr0.33MnO3 ceramics prepared by sol–gel technique

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of ceramic samples La0.2Nd0.47Sr0.33−x Ca x MnO3 (x = 0.00, 0.03, 0.06, 0.09 and 0.12) were prepared by sol–gel technique. The crystal structure was analyzed by X-ray diffraction, which reveals that all the samples are single-phase without any detectable secondary phases. The grain size and surface morphology were investigated by scanning electron microscope ,which indicates that ceramic samples with better crystallization have high density. The resistivity dependence of the temperature (R-T) of the bulk samples was studied by the standard four-probe method. The result of the R-T curves shows that the metal-insulator transition temperature shifts to the lower temperature and the resistivity as well as the maximum value of the temperature coefficient of resistivity increase. It is usually interpreted as the Ca-doping decreases the A-site cationic radius and the tolerance factor, which results in MnO6 octahedral tilting and the decrease of the double exchange between Mn3+ and Mn4+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh D, Mahajan A (2015) Investigation of structural, magnetic and electric transport properties of half-doped chromium manganites La0.3R0.2Sr0.5Mn0.5Cr0.5O3 (R=La,Nd,Sm and Gd). Ceram Int 41:11748–11755

    Article  Google Scholar 

  2. Attfiel JP (2002) 'A' cation control of perovskite properties. Cryst Eng 5:427–438

    Article  Google Scholar 

  3. Dhahri A, Rhouma FIH, Mnefgui S, Dhahri J, Hlil EK (2014) Room temperature critical behavior and magnetocaloric properties of La0.6Nd0.1(CaSr)(0.3)Mn0.9V0.1O3. Ceram Int 40:459–464

    Article  Google Scholar 

  4. Selmi A, M’nassri R, Koubaa WC, Boudjada NC, Cheikhrouhou A (2015) Influence of transition metal doping (Fe, Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites. Ceram Int 41:10177–10184

    Article  Google Scholar 

  5. Woodward PM, Vogt T, Cox DE, Arulraj A, Rao CNR, Karen P, Cheetham AK (1998) Influence of cation size on the structural features of Lu(1/2)A(1/2)MuO(3) perovskites at room temperature. J Chem Mater 10:3652–3665

    Article  Google Scholar 

  6. Wang ZM, Ni G, Sang H, Du YW (2001) Magnetocaloric effect in perovskite manganites La0.7-xNdxCa0.3MnO3 and La0.7Ca0.3MnO3. J Magn Magn Mater 234:213–217

    Article  Google Scholar 

  7. Ade R, Singh R (2015) Disorder-driven phase transition in La0.37D0.30Ca0.33MnO3 (D = Bi, Sm) manganites. Ceram Int 41:4759–4767

    Article  Google Scholar 

  8. Yang XS, Yang LQ, Lv L, Cheng CH, Zhao Y (2012) Magnetic phase transition in La0.7Sr0.3MnO3/Ta2O5 ceramic composites. Ceram Int 38:2575–2578

    Article  Google Scholar 

  9. Feng M, Li HB, Liu M, Li N, Zheng WT (2009) Magnetic and magnetoresistive properties of La0.65-xEuxSr0.35MnO3. Ceram Int 35:345–347

    Article  Google Scholar 

  10. Fan JY, Xu LS, Zhang XY, Shi YG, Zhang WC, Zhu Y, Gao BT, Hong B, Zhang L (2015) Effect of A-site average radius and cation disorder on magnetism and electronic properties in manganite (A = Sm, Dy, Er). J Mater Sci 50:2130–2137

    Article  Google Scholar 

  11. Cao DY, Zhang YY, Dong WX (2015) Structure, magnetic and transport properties of La0.7Ca0.3-xSrxMnO3 thin films by sol-gel method. Ceram Int 41:S381–S386

    Article  Google Scholar 

  12. Baaziz H, Tozri A, Dhahri E (2015) Effect of particle size reduction on the structural, magnetic properties and the spin excitations in ferromagnetic insulator La0.9Sr0.1MnO3 nanoparticles. Ceram Int 41:2955–2962

    Article  Google Scholar 

  13. Liu SM, Zhu XB, Yang J (2006) The effect of grain boundary on the properties of La0.7Sr0.3MnO3 thin films prepared by chemical solution deposition. Ceram Int 32:157–162

    Article  Google Scholar 

  14. Kuberkar DG, Doshi RR, Solanki PS, Khachar U, Vagadia M, Ravalia A, Ganesan V (2012) Grain morphology and size disorder effect on the transport and magnetotransport in Sol-Gel grown nanostructured manganites. Appl Surf Sci 258:9041–9046

    Article  Google Scholar 

  15. Bellouz R, Kallel S, Khirounib K, Pena O, Oumezzine M (2015) Structural, electrical conductance and complex impedance analysis of (Nd1-xCex)(0.7)Sr0.3MnO3 (0 <= x <= 0.20) perovskite. Ceram Int 41:1929–1936

    Article  Google Scholar 

  16. Khelifi J, Tozri A, Issaoui F (2014) The influence of disorder on the appearance of Griffiths phase and magnetoresistive properties in (La1-xNdx)(2/3) (Ca1-ySry)(1/3)MnO3 oxides. Ceram Int 40:1641–1649

    Article  Google Scholar 

  17. Mnefgui S, Zaidi N, Dhahri N, Dhari J, Hlil EK (2015) Electrical transport properties and transport-entropy correlations in La0.57Nd0.1Sr0.33MnO3 manganite. J Magn Magn Mater 384:219–223

    Article  Google Scholar 

  18. Irmak AE, Coskun A, Tasarkuyu E (2010) The influence of the sintering temperature on the structural and the magnetic properties of doped manganites: La0.95Ag0.05MnO3 and La0.75Ag0.25MnO3. J Magn Magn Mater 322:945–951

    Article  Google Scholar 

  19. Lide M, Martinez R, Ehrenberg H, Attfield JP (2000) Disorder effects on structural and electronic transitions in high tolerance factor manganite perovskites. Solid State Sci 2:11–16

    Article  Google Scholar 

  20. Smolyaninova VN, Lofland SE, Hill C, Budhani RC, Serpil Gonen Z, Eichhorn BW, Greene RL (2002) Effect of A-site cation disorder on charge ordering and ferromagnetism of La0.5Ca0.5-yBayMnO3. J Magn Magn Mater 248:348–354

    Article  Google Scholar 

  21. Damay F, Maignan A, Martin C, Raveau B (1997) J Appl Phys 81:1372

  22. Wang ZM, Xu F, Du YL, Zhu JA, Zhang H (2006) Effect of average A-site cation radius on complex permeability of perovskite manganite La0.65Nd0.05(Sr, Ba)(0.3)MnO3. J Magn Magn Mater 307:205–208

    Article  Google Scholar 

  23. Yadav N, Kumar A, Rana PS, Rana DS, Arora M, Pant RP (2015) Finite size effect on Sm3+ doped Mn0.5Zn0.5SmxFe2-xO4 (0 <= x <= 0.5) ferrite nanoparticles. Ceram. Int. 41:8623–8629

    Article  Google Scholar 

  24. Conceicao LD, Ribeiro NFP, Souza MMVM (2011) Synthesis of La1−x Srx MnO3 powders by polymerizable complex method: Evaluation of structural, morphological and electrical properties. Ceram Int 37:2229–2236

    Article  Google Scholar 

  25. Mahjoub S, Baazaoui M, Hlil EK, Oumezzine M (2015) Effect of synthesis techniques on structural, magnetocaloric and critical behavior of Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3 manganites. Ceram Int 41:12407–12416

    Article  Google Scholar 

  26. Fonseca FC, Souza JA, Jardim RF, Muccillo R, Muccillo ENS, Gouve D, Jung MH, Lacerda AH (2004) Transport properties of La0.6Y0.1Ca0.3MnO3 compounds with different interfaces. J Eur Ceram Soc 24:1271–1275

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.11564021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, Q., Jin, F. et al. Effect of Ca-doping on the electrical properties of La0.2Nd0.47Sr0.33MnO3 ceramics prepared by sol–gel technique. J Sol-Gel Sci Technol 82, 177–183 (2017). https://doi.org/10.1007/s10971-016-4288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4288-5

Keywords

Navigation