Skip to main content
Log in

Effect of mass concentration on bioactivity and cell viability of calcined silica aerogel synthesized from rice husk ash as silica source

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
  • volume 82pages 120–132 (2017)
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Cite this article

Abstract

The biocompatibility of calcined silica aerogel (900 °C) synthesized from rice husk ash via sol–gel ambient-pressure drying technique was studied. The silica aerogel was characterized by Fourier transform infrared spectroscopy, X-ray diffraction and field emission-scanning electron microscopy. The structure of silica aerogel remains intact but is deficient in silanol groups after calcination. The bioactivity of the silica aerogel was tested by immersion in simulated body fluid for 7 days with various mass concentrations (0.08–0.8 wt%). The results from Fourier transform infrared, X-ray diffraction, field emission-scanning electron microscopy and phosphorous analyses confirm that the silica aerogel could facilitate the nucleation of apatite. The silica aerogel was simultaneously resorbed and the broken Si–O–Si bonds were replaced with new apatite bonds. The optimal mass concentration was 0.16 wt%. At a higher mass concentration (0.8 wt%), silica aerogel tends to form polymeric interactions with tris-hydroxymethyl-aminomethane, a chemical compound in simulated body fluid. In the in vitro cell viability assay of the calcined silica aerogel against human dermal fibroblast cells, the cell viability increased with the increase of silica aerogel mass concentration. This early evidence shows that the calcined silica aerogel synthesized from rice husk ash via the sol–gel ambient-pressure drying technique can be considered as a potential alternative material for tissue engineering applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco LM, Pagliaro M (2013) The sol–gel route to advanced silica-based materials and recent applications. Chem Rev 113(8):6592–6620

    Article  Google Scholar 

  2. Huang Y, Niu JL (2015) Application of super-insulating translucent silica aerogel glazing system on commercial building envelope of humid subtropical climates—impact on space cooling load. Energy 83:316–325

    Article  Google Scholar 

  3. Mabrouk M, Selim MM, Beherei H, El-Gohary MI (2012) Effect of incorporation of nano bioactive silica into commercial glass ionomer cement (GIC). J Genet Eng Biotechnol 10(1):113–119

    Article  Google Scholar 

  4. Seleem MN, Munusamy P, Ranjan A, Alqublan H, Pickrell G, Sriranganathan N (2009) Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens. Antimicrob Agents Chemother 53(10):4270–4274

    Article  Google Scholar 

  5. Wang X, Ben Ahmed N, Alvarez GS, Tuttolomondo MV, Hélary C, Desimone MF, Coradin T (2015) Sol–gel encapsulation of biomolecules and cells for medicinal applications. Curr Top Med Chem 15(3):223–244

    Article  Google Scholar 

  6. Yousefi Amiri T, Moghaddas J (2015) Cogeled copper–silica aerogel as a catalyst in hydrogen production from methanol steam reforming. Int J Hydrog Energy 40(3):1472–1480

    Article  Google Scholar 

  7. Yang K-N, Zhang C-Q, Wang W, Wang PC, Zhou J-P, Liang X-J (2014) pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol Med 11(1):34–43

    Google Scholar 

  8. Godec A, Maver U, Bele M, Planinšek O, Srčič S, Gaberšček M, Jamnik J (2007) Vitrification from solution in restricted space: formation and stabilization of amorphous nifedipine in a nanoporous silica xerogel carrier. Int J Pharm 343(1–2):131–140

    Article  Google Scholar 

  9. Baek SM, Singh R, Khanal D, Patel KD, Lee E-J, Leong KW, Chrzanowski W, Kim H-W (2015), Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale 7:14191–14216.

  10. Walia S, Acharya A (2015) Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy. Beilstein J Nanotechnol 6(1):546–558

    Article  Google Scholar 

  11. Henstock JR, Canham LT, Anderson SI (2015) Silicon: the evolution of its use in biomaterials. Acta Biomater 11(1):17–26

    Article  Google Scholar 

  12. Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel: synthesis, properties and characterization. J Mater Process Technol 199(1):10–26

    Article  Google Scholar 

  13. Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:1–11

    Article  Google Scholar 

  14. Venkateswara Rao A, Bhagat SD (2004) Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid-base) sol–gel process. Solid State Sci 6(9):945–952

    Article  Google Scholar 

  15. Toledo-Fernández JA, Mendoza-Serna R, Morales V, De La Rosa-Fox N, Piñero M, Santos A, Esquivias L (2008) Bioactivity of wollastonite/aerogels composites obtained from a TEOS-MTES matrix. J Mater Sci Mater Med 19(5):2207–2213

    Article  Google Scholar 

  16. Carlson G, Lewis D, McKinley K, Richardson J, Tillotson T (1995) Aerogel commercialization: technology, markets and costs. J Non Cryst Solids 186:372–379

    Article  Google Scholar 

  17. He S, Huang D, Bi H, Li Z, Yang H, Cheng X (2015) Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass. J Non Cryst Solids 410:58–64

    Article  Google Scholar 

  18. Cai H, Sharma S, Liu W, Mu W, Liu W, Zhang X, Deng Y (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15:2540–2547

    Article  Google Scholar 

  19. Mallepally RR, Marin MA, Surampudi V, Subia B, Rao RR, Kundu SC, McHugh MA (2015) Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomed Mater 10(3):35002

    Article  Google Scholar 

  20. Ding B, Cai J, Huang J, Zhang L, Chen Y, Shi X, Du Y, Kuga S (2012) Facile preparation of robust and biocompatible chitin aerogels. J Mater Chem 22(12):5801

    Article  Google Scholar 

  21. Lu T, Li Q, Chen W, Yu H (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138

    Article  Google Scholar 

  22. Salinas AJ, Maria VR, José ATF, Roberto MS, Piñero M, Esquivias L, Julio RC, José MGC (2009) Nanostructure and bioactivity of hybrid aerogels. Chem Mater 21(1):41–47

    Article  Google Scholar 

  23. Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159

    Article  Google Scholar 

  24. Stergar J, Maver U (2016) Review of aerogel-based materials in biomedical applications. J Sol Gel Sci Technol 77(3):738–752

    Article  Google Scholar 

  25. Schneider M, Stracke F, Hansen S, Schaefer UF (2009) Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 1(4):197–206

    Article  Google Scholar 

  26. Alshatwi AA, Athinarayanan J, Periasamy VS (2015) Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. Mater Sci Eng C 47:8–16

    Article  Google Scholar 

  27. Hamdan H, Muhid MNM, Endud S, Listiorini E, Ramli Z (1997) 29Si MAS NMR, XRD and FESEM studies of rice husk silica for the synthesis of zeolites. J Non Cryst Solids 211(1–2):126–131

    Article  Google Scholar 

  28. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  Google Scholar 

  29. Van Kooten TG, Klein CL, Otto M (1998) Current trends in biocompatibility testing. Proc Inst Mech Eng 212:75–84

    Article  Google Scholar 

  30. Aminian A, Solati-Hashjin M, Samadikuchaksaraei A, Bakhshi F, Gorjipour F, Farzadi A, Moztarzadeh F, Schmücker M (2011) Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceram Int 37(4):1219–1229

    Article  Google Scholar 

  31. Blagosklonny MV, El-Deiry WS (1996) In vitro evaluation of A P53-expressing adenovirus as an anti-cancer drug. Int J Cancer 67(3):386–392

    Article  Google Scholar 

  32. Avelar-Freitas BA, Almeida VG, Pinto MCX, Mourão FAG, Massensini AR, Martins-Filho OA, Rocha-Vieira E, Brito-Melo GEA (2014) Trypan blue exclusion assay by flow cytometry. Braz J Med Biol Res 47(4):307–315

    Article  Google Scholar 

  33. Altman S, Randers L, Rao G (1999) Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations. Biotechnol Prog 9:671–674

    Article  Google Scholar 

  34. Xian W, (2009) A laboratory course in biomaterials. CRC Press. Boca Raton, Florida, US. pp. 99–128

  35. Boinski F, Khouchaf L, Tuilier MH (2010) Study of the mechanisms involved in reactive Silica. Mater Chem Phys 122(1):311–315

    Article  Google Scholar 

  36. Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwi AA (2014) Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41(1):275–281

    Article  Google Scholar 

  37. Nayak JP, Bera J (2009) Preparation of silica aerogel by ambient pressure drying process using rice husk Ash as raw material. Trans Indian Ceram Soc 68(2):1–4

    Article  Google Scholar 

  38. Bhagat SD, Kim YH, Ahn YS, Yeo JG (2006) Textural properties of ambient pressure dried water-glass based silica aerogel beads: one day synthesis. Microporous Mesoporous Mater 96(1–3):237–244

    Article  Google Scholar 

  39. Sani S, Mohd Muhid MN, Hamdan H (2011) Design, synthesis and activity study of tyrosinase encapsulated silica aerogel (TESA) biosensor for phenol removal in aqueous solution. J Sol Gel Sci Technol 59(1):7–18

    Article  Google Scholar 

  40. de Oliveira AAR, de Souza DA, Dias LLS, de Carvalho SM, Mansur HS, de Magalhães Pereira M (2013) Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed Mater 8(2):25011

    Article  Google Scholar 

  41. Shi F, Wang L, Liu J (2006) Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater Lett 60(29–30):3718–3722

    Article  Google Scholar 

  42. Zhang Y, Hu L, Yu D, Gao C (2010) Influence of silica particle internalization on adhesion and migration of human dermal fibroblasts. Biomaterials 31(32):8465–8474

    Article  Google Scholar 

  43. Reséndiz-Hernández PJ, Cortés-Hernández DA, Méndez Nonell J, Escobedo-Bocardo JC (2014) Bioactive and biocompatible silica/pseudowollastonite aerogels. Adv Sci Technol 96:21–26

    Article  Google Scholar 

  44. Hayakawa S, Kanaya T, Tsuru K, Shirosaki Y, Osaka A, Fujii E, Kawabata K, Gasqueres G, Bonhomme C, Babonneau F, Jäger C, Kleebe H (2013) Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles. Acta Biomater 9(1):4856–4867

    Article  Google Scholar 

  45. Rehman I, Bonfield W (1997) Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med 8(1):1–4

    Article  Google Scholar 

  46. Guo X, Xiao P (2006) Effects of solvents on properties of nanocrystalline hydroxyapatite produced from hydrothermal process. J Eur Ceram Soc 26:3383–3391

    Article  Google Scholar 

  47. Fontinha IR, Salta MM, Zheludkevich ML, Ferreira MGS (2013) EIS study of amine cured epoxy-silica-zirconia sol–gel coatings for corrosion protection of the aluminium alloy EN AW 6063. Port Electrochim Acta 31(6):307–319

    Article  Google Scholar 

  48. Zhang G, Dass A, Rawashdeh AMM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis N (2004) Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. J Non Cryst Solids 350:152–164

    Article  Google Scholar 

  49. Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Control Release 177(1):51–63

    Article  Google Scholar 

  50. Wang Z, Wang D, Qian Z, Guo J, Dong H, Zhao N, Xu J (2015) Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications. ACS Appl Mater Interfaces 7(3):2016–2024

    Article  Google Scholar 

  51. Naghizadeh F, Abdul Kadir MR, Doostmohammadi A, Roozbahani F, Iqbal N, Taheri MM, Naveen SV, Kamarul T (2015) Rice husk derived bioactive glass-ceramic as a functional bioceramic: synthesis, characterization and biological testing. J Non Cryst Solids 427:54–61

    Article  Google Scholar 

  52. Lu X, Leng Y (2005) Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 26(10):1097–1108

    Article  Google Scholar 

  53. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 28(1):7–15. Jan

    Article  Google Scholar 

  54. Li T, Wang T (2008) Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure. Mater Chem Phys 112(2):398–401

    Article  Google Scholar 

  55. Andersson ÖH, Karlsson KH (1991) On the bioactivity of silicate glass. J Non Cryst Solids 129(1–3):145–151

    Article  Google Scholar 

  56. Pierre AC, Pajonk M (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265

    Article  Google Scholar 

  57. Pei X, Zhai W, Zheng W (2015) Preparation of poly (aryl ether ketone ketone)–silica composite aerogel for thermal insulation application. J Sol Gel Sci Technol 76(1):98–109

    Article  Google Scholar 

  58. Mad Jin R, Sultana N, Baba S, Hamdan S, Ismail AF (2015), Porous PCL/chitosan and nHA/PCL/chitosan scaffolds for tissue engineering applications: fabrication and evaluation. J Nanomater. Article ID 357372:1–8

    Article  Google Scholar 

  59. Mohd Daud N, Sing NB, Yusop AH, Abdul Majid FA, Hermawan H (2014) Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds. J Orthop Transl 2(4):177–184

    Google Scholar 

  60. Maury S, Buisson P, Perrard A, Pierre AC (2004) Influence of the sol–gel chemistry on the activity of a lipase encapsulated in a silica aerogel. J Mol Catal B 29(1–6):133–148

    Article  Google Scholar 

  61. Fruijtier-Pölloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica-A nanostructured material. Toxicology 294(2–3):61–79

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Education, Malaysia and Universiti Teknologi Malaysia (UTM) for financially supporting this research work under the Fundamental Research Grant Scheme (FRGS, Vot No: 4F514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nik Ahmad Nizam Nik Malek.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sani, N.S., Malek, N.A.N.N., Jemon, K. et al. Effect of mass concentration on bioactivity and cell viability of calcined silica aerogel synthesized from rice husk ash as silica source. J Sol-Gel Sci Technol 82, 120–132 (2017). https://doi.org/10.1007/s10971-016-4266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4266-y

Keywords

Navigation