Skip to main content
Log in

Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol–gel coating of polystyrene nanoparticles

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study a templating method to form hollow Si nanospheres encapsulated with a carbon shell (HSi@C) has been investigated. The key synthesis parameters and their optimization are studied. The positively charged surface of sacrificial polystyrene (PS) nanospheres is found to be essential in forming a uniform SiO2 shell on PS through sol–gel reactions of tetraethylorthosilicate in a basic medium. Both the sol–gel reaction time and hydrolysis ratio play an important role in controlling the thickness of the SiO2 shell. The PS core is burnt via a step-wise programmed heating to prevent the formation of cracks in hollow SiO2 nanospheres which are subsequently converted to hollow Si nanospheres through magnesiothermic reduction using MgH2. Removal of the byproducts from the reduction is critical for superior electrochemical performance. The hollow Si nanospheres are coated with a carbon shell to form HSi@C which are evaluated as the active material for Li-ion battery anodes. Electrochemical results indicate significant improvements in the specific capacity and cycling stability of half-cells in comparison to other designs. The improvement is attributed to the synergistic effects of the engineered void and conductive carbon shell in HSi@C.

Graphical Abstract

Specific capacity and Coulombic efficiency of HSi@C half cells vs. cycle number at different current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ghosh Chaudhuri R, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433

    Article  Google Scholar 

  2. Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16(11):1013–1030

    Article  Google Scholar 

  3. Ding X, Jiang Y, Yu K, Hari B, Tao N, Zhao J, Wang Z (2004) Silicon dioxide as coating on polystyrene nanoparticles in situ emulsion polymerization. Mater Lett 58(11):1722–1725

    Article  Google Scholar 

  4. Ashuri M, He Q, Shaw LL (2016) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8(1):74–103

    Article  Google Scholar 

  5. Zhang T, Gao J, Zhang HP, Yang LC, Wu YP, Wu HQ (2007) Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem Commun 9(5):886–890

    Article  Google Scholar 

  6. Zhang T, Fu L, Gao J, Yang L, Wu Y, Wu H (2006) Core-shell Si/C nanocomposite as anode material for lithium ion batteries. Pure Appl Chem 78(10):1889–1896

    Article  Google Scholar 

  7. Ma D, Cao Z, Hu A (2014) Si-based anode materials for Li-ion batteries: a mini review. Nano-Micro Lett 6(4):347–358

    Article  Google Scholar 

  8. Zhang L, D’Acunzi M, Kappl M, Auernhammer GnK, Vollmer D, van Kats CM, van Blaaderen A (2009) Hollow silica spheres: synthesis and mechanical properties. Langmuir 25(5):2711–2717

    Article  Google Scholar 

  9. Hwa Y, Kim W-S, Hong S-H, Sohn H-J (2012) High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries. Electrochim Acta 71:201–205

    Article  Google Scholar 

  10. Tao H-C, Yang X-L, Zhang L-L, Ni S-B (2014) Double-walled core-shell structured Si@SiO2@C nanocomposite as anode for lithium-ion batteries. Ionics 20(11):1547–1552

    Article  Google Scholar 

  11. Murugesan S, Harris JT, Korgel BA, Stevenson KJ (2012) Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries. Chem Mater 24(7):1306–1315

    Article  Google Scholar 

  12. Yan D, Bai Y, Yu C, Li X, Zhang W (2014) A novel pineapple-structured Si/TiO2 composite as anode material for lithium ion batteries. J Alloys Compd 609:86–92

    Article  Google Scholar 

  13. Tang D, Yi R, Gordin ML, Melnyk M, Dai F, Chen S, Song J, Wang D (2014) Titanium nitride coating to enhance the performance of silicon nanoparticles as a lithium-ion battery anode. J Mater Chem A 2(27):10375–10378

    Article  Google Scholar 

  14. Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee JY (2012) Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew Chem Int Ed 51(10):2409–2413

    Article  Google Scholar 

  15. Ashuri M, He Q, Liu Y, Zhang K, Emani S, Sawicki MS, Shamie JS, Shaw LL (2016) Hollow silicon nanospheres encapsulated with a thin carbon shell: an electrochemical study. Electrochim Acta 215:126–141

    Article  Google Scholar 

  16. Chen L, Liu Y, Ashuri M, Liu C, Shaw LL (2014) Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries. J Mater Chem A 2(42):18026–18032

    Article  Google Scholar 

  17. Wang N, Zhao P, Liang K, Yao M, Yang Y, Hu W (2017) CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chem Eng J 307:105–112

    Article  Google Scholar 

  18. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18(4):259–341

    Article  Google Scholar 

  19. Brinker CJ (1988) Glasses and glass ceramics from gels hydrolysis and condensation of silicates: effects on structure. J Non-Cryst Solids 100(1):31–50

    Article  Google Scholar 

  20. Lu Y, McLellan J, Xia Y (2004) Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. Langmuir 20(8):3464–3470

    Article  Google Scholar 

  21. Shaw LL, Shen C, Thomas EL (2010) Synthesis of gadolinia-doped ceria gels and powders from acetylacetonate precursors. J Sol-Gel Sci Tech 53(1):1–11

    Article  Google Scholar 

  22. Shen C, Shaw LL (2010) FTIR analysis of the hydrolysis rate in the sol–gel formation of gadolinia-doped ceria with acetylacetonate precursors. J Sol-Gel Sci Tech 53(3):571–577

    Article  Google Scholar 

  23. Yun DS, Jang HG, Yoo JW (2011) Fabrication of uniform hollow silica nanospheres using a cationic polystyrene core. Bull Korean Chem Soc 32(5):1534–1538

    Article  Google Scholar 

  24. Zhang S, Xu L, Liu H, Zhao Y, Zhang Y, Wang Q, Yu Z, Liu Z (2009) A dual template method for synthesizing hollow silica spheres with mesoporous shells. Mater Lett 63(2):258–259

    Article  Google Scholar 

  25. Takahashi R, Sato S, Sodesawa T, Kawakita M, Ogura K (2000) High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid. J Phys Chem B 104(51):12184–12191

    Article  Google Scholar 

  26. Shen C, Shaw LL, Zhang LC, Thomas EL (2012) Porous gadolinia-doped ceria with adjustable pore sizes using PI-b-PEO copolymer as the structure-directing agent. J Sol-Gel Sci Tech 63(1):72–84

    Article  Google Scholar 

  27. Izutsu H, Mizukami F, Sashida T, Maeda K, Kiyozumi Y, Akiyama Y (1997) Effect of malic acid on structure of silicon alkoxide derived silica. J Non-Cryst Solids 212(1):40–48

    Article  Google Scholar 

  28. Obrovac M, Krause L (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154(2):A103–A108

    Article  Google Scholar 

  29. Pan L, Wang H, Gao D, Chen S, Tan L, Li L (2014) Facile synthesis of yolk–shell structured Si–C nanocomposites as anodes for lithium-ion batteries. Chem Commun 50(44):5878–5880

    Article  Google Scholar 

  30. Kim H, Seo M, Park M-H, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angewa Chem Int Ed 49(12):2146–2149

    Article  Google Scholar 

  31. Tao H, Fan L-Z, Song W-L, Wu M, He X, Qu X (2014) Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. Nanoscale 6(6):3138–3142

    Article  Google Scholar 

  32. Su L, Zhou Z, Ren M (2010) Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem Commun 46(15):2590–2592

    Article  Google Scholar 

  33. Zhou X-y, Tang J-j, Yang J, Xie J, Ma L-l (2013) Silicon@carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries. Electrochim Acta 87:663–668

    Article  Google Scholar 

Download references

Acknowledgments

MA and LS are grateful to the Rowe Family Endowment Fund, and QH acknowledges Tang Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon L. Shaw.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashuri, M., He, Q., Zhang, K. et al. Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol–gel coating of polystyrene nanoparticles. J Sol-Gel Sci Technol 82, 201–213 (2017). https://doi.org/10.1007/s10971-016-4265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4265-z

Keywords

Navigation