Journal of Sol-Gel Science and Technology

, Volume 80, Issue 2, pp 277–284 | Cite as

Composite films combining electrospun fiber network and epitaxial oxide by chemical solution deposition

  • Albert Calleja
  • Jordi Sort
  • Susagna Ricart
  • Xavier Granados
  • Xavier Palmer
  • Valentina Roxana Vlad
  • Teresa Puig
  • Xavier Obradors
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Abstract

We report the preparation of a novel type of composites films by chemical solution deposition. It consists of an epitaxial oxide on a single-crystal template inside which an oxide fiber network is dispersed. Electrospinning is used for the deposition of the fiber network, whereas the continuous epitaxial phase is spin-coated. Homogeneous coating is observed between the liquid precursor of the continuous oxide and the fibers and remarkably, epitaxial (001) growth of the YBa2Cu3O7−x is not affected by the presence of the fiber network because both oxides do not react to each other. Topological continuity of the continuous phase is probed by electrical conductivity measurements, rendering nearly the same values reported for fiber-free films. Mechanical properties are determined by nanoindentation at low penetration depths to avoid the effect of the single crystal beneath the composite. Enhanced mechanical properties are found (hardness, Young’s modulus, elastic recovery and wear resistance).

Graphical Abstract

A thin film of c-axis-oriented epitaxial YBa2Cu3O7−x with embedded electrospun fiber network of BaZrO3 was prepared by chemical solution deposition. Mechanical properties were analyzed in these composite films by nanoindentation, showing an enhancement of hardness, Young’s modulus, elastic recovery and wear resistance with respect to the BaZrO3-free films.

Keywords

Ceramic fiber Electrospinning Thin film Chemical solution deposition High-temperature superconductivity Mechanical properties Mechanical testing 

Supplementary material

10971_2016_4133_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1496 kb)

References

  1. 1.
    Barrow DA, Petroff TE, Sayer M (1995) Thick ceramic coatings using a sol–gel based ceramic–ceramic 0–3 composite. Surf Coat Technol 76–77:113–118CrossRefGoogle Scholar
  2. 2.
    Wan JG, Wang XW, Wu YJ, Zeng M, Wang Y, Jiang H, Zhou WQ, Wang GH, Liu J-M (2005) Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol–gel process. Appl Phys Lett 86:122501CrossRefGoogle Scholar
  3. 3.
    Coll M, Ye S, Rouco V, Palau A, Guzman R, Gazquez J, Arbiol J, Suo H, Puig T, Obradors X (2013) Size-controlled spontaneously segregated Ba2YTaO6 nanoparticles in YBa2Cu3O7 nanocomposites by chemical solution deposition. Supercond Sci Technol 26:015001CrossRefGoogle Scholar
  4. 4.
    Martucci A, Bassiri N, Gugliemi M, Armelao L, Gross S, Pivin JC (2003) NiO–SiO2 sol–gel nanocomposite films for optical gas sensor. J Sol-Gel Sci Technol 26:993–996CrossRefGoogle Scholar
  5. 5.
    Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706CrossRefGoogle Scholar
  6. 6.
    Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81:5123–5125CrossRefGoogle Scholar
  7. 7.
    MacManus-Driscoll JL, Foltyn SR, Jia QX, Wang H, Serquis A, Civale L, Maiorov B, Hawley ME, Maley MP, Peterson DE (2004) Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7–x + BaZrO3. Nat Mater 3:439–443CrossRefGoogle Scholar
  8. 8.
    Gutierrez J, Llordes A, Gazquez J, Gibert M, Roma N, Ricart S, Pomar A, Sandiumenge F, Mestres N, Puig T, Obradors X (2007) trong isotropic flux pinning in YBa2Cu3O7−x + BaZrO3 films derived from chemical solutions. Nat Mater 6:367–373CrossRefGoogle Scholar
  9. 9.
    Matsumoto K, Mele P (2010) Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond Sci Technol 23:014001CrossRefGoogle Scholar
  10. 10.
    Miura M, Maiorov B, Balakirev FF, Kato T, Sato M, Takagi Y, Izumi T, Civale L (2016) Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition. Sci Rep 6:20436CrossRefGoogle Scholar
  11. 11.
    Skov-Hansen P, Han Z, Bech JI (1999) Stresses and strains in multi-filament HTS tapes. IEEE Trans Appl Supercond 9:2617–2620CrossRefGoogle Scholar
  12. 12.
    Cheggour N, Ekin JW, Xie YY, Selvamanickam V, Thieme CLH, Verebelyi DT (2005) Enhancement of the irreversible axial-strain limit of Y–Ba–Cu–O-coated conductors with the addition of a Cu layer. Appl Phys Lett 87:212505CrossRefGoogle Scholar
  13. 13.
    Calleja A, Ricart S, Granados X, Palmer X, Solano E, Cano F, Tornero JA, Puig T, Obradors X (2012) Epitaxial BaZrO3 tracks by electrospinning of metalorganic fibers on single crystals. CrystEngComm 14:4686–4691CrossRefGoogle Scholar
  14. 14.
    Obradors X, Puig T, Pomar A, Sandiumenge F, Piñol S, Mestres N, Castaño O, Coll M, Cavallaro A, Palau A, Gazquez J, Gonzalez JC, Gutierrez J, Roma N, Ricart S, Moreto JM, Rossell MD, van Tendeloo G (2004) Chemical solution deposition: a path towards low cost coated conductors. Supercond Sci Technol 17:1055–1064CrossRefGoogle Scholar
  15. 15.
    Roma N, Morlens S, Ricart S, Zalamova K, Moreto JM, Pomar A, Puig T, Obradors X (2006) Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films. Supercond Sci Technol 19:521–527CrossRefGoogle Scholar
  16. 16.
    Fischer-Cripps AC (2004) Nanoindentation. Springer, BerlinCrossRefGoogle Scholar
  17. 17.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  18. 18.
    Fornell J, Gonzalez S, Rossinyol E, Suriñach S, Baro MD, Louzguine-Luzgin DV, Perepezko JH, Sort J, Inoue A (2010) Enhanced mechanical properties due to structural changes induced by devitrification in Fe–Co–B–Si–Nb bulk metallic glass. Acta Mater 58:6256–6266CrossRefGoogle Scholar
  19. 19.
    Abellán P, Sandiumenge F, Casanove M-J, Gibert M, Palau A, Puig T, Obradors X (2011) Interaction between solution derived BaZrO3 nanodot interfacial templates and YBa2Cu3O7 films leading to enhanced critical currents. Acta Mater 59:2075–2082CrossRefGoogle Scholar
  20. 20.
    Miura M, Yoshizumi M, Izumi T, Shiohara Y (2010) Formation mechanism of BaZrO3 nanoparticles in Y1−xSmxBa2Cu3Oy-coated conductors derived from trifluoroacetate metal–organic deposition. Supercond Sci Technol 23:014013CrossRefGoogle Scholar
  21. 21.
    Vassen R, Cao X, Tietz F, Basu D, Stöver D (2000) Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc 83:2023–2028CrossRefGoogle Scholar
  22. 22.
    Kölemen U, Çelebi S, Karal H, Öztürk A, Çevik U, Nezir S, Görür O (2004) Superconducting and Vickers hardness properties of ZnO-added YBCO polycrystalline superconductors. Phys Status Solidi 241:274–283CrossRefGoogle Scholar
  23. 23.
    Oka T, Ogasawara F, Itoh Y, Suganuma M, Mizutani U (1990) Mechanical and superconducting properties of Ag/YBCO composite superconductors reinforced by the addition of Zr. Jpn J Appl Phys 29:1924–1933CrossRefGoogle Scholar
  24. 24.
    Pellicer E, Varea A, Pane S, Nelson BJ, Menendez E, Estrader M, Suriñach S, Baro MD, Nogues J, Sort J (2010) Nanocrystalline electroplated Cu–Ni: metallic thin films with enhanced mechanical properties and tunable magnetic behavior. Adv Funct Mater 20:983–991CrossRefGoogle Scholar
  25. 25.
    Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246:1–11CrossRefGoogle Scholar
  26. 26.
    Pellicer E, Pane S, Sivaraman KM, Ergeneman O, Suriñach S, Baro MD, Nelson BJ, Sort J (2011) Effects of the anion in glycine-containing electrolytes on the mechanical properties of electrodeposited Co-Ni films. Mater Chem Phys 130:1380–1386CrossRefGoogle Scholar
  27. 27.
    Cheng YT, Cheng CM (1998) Relationships between hardness, elastic modulus, and the work of indentation. Appl Phys Lett 73:614–616CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Albert Calleja
    • 1
    • 2
  • Jordi Sort
    • 3
  • Susagna Ricart
    • 1
  • Xavier Granados
    • 1
  • Xavier Palmer
    • 1
  • Valentina Roxana Vlad
    • 2
  • Teresa Puig
    • 1
  • Xavier Obradors
    • 1
  1. 1.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)BellaterraSpain
  2. 2.Oxolutia SL, Edifici Eureka, Parc de Recerca UABBellaterraSpain
  3. 3.Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Facultat de Ciències, Edifici CcUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations