Wallenberger FT, Weston NE, Dunn SA (1990) Inviscid melt spinning: As-spun crystalline alumina fibers. J Mater Res 11:2682–2686
Article
Google Scholar
Wallenberger FT, Weston NE, Motzfeldt K, Swartzfager DG (1992) Inviscid melt spinning of alumina fibers: chemical jet stabilization. J Am Ceram Soc 75(3):629–636
Article
Google Scholar
Bunsell AR, Berger MH (1999) Fine ceramic fibers. Marcel Dekker, New York
Google Scholar
Tan H, Zhang J, Bo H (2011) Continuous alumina gel fibers by sol-gel method using glycolic acid, aluminum nitrate and polyvinylpyrrolidone. Ceramics 55(3):276–279
Google Scholar
Krivoshapkin PV, Krivoshapkina EF, Dudkin BN (2013) Growth and structure of microscale fibers as precursors of alumina nanofibers. J Phys Chem Solids 74(7):991–996
Article
Google Scholar
Cottringer TE, Van De MRH, Bauer R, Yarbrough WA. Alumina sol-gel fiber. US Patent 1996; 5514631
Shigapov AN, Graham GW, McCabe RW, Plummer HK Jr (2001) The preparation of high-surface area, thermally-stable, metal-oxide catalysts and supports by a cellulose templating approach. App Catal A Gen 210(1–2):287–300
Article
Google Scholar
Fan T, Sun B, Gu J, Zhang D, Lau LWM (2005) Biomorphic Al2O3 fibers synthesized using cotton as bio-templates. Scr Mater 53(8):893–897
Article
Google Scholar
Ma G, Ma Z, Zhang Z, Yang Z, Lei Z (2012) Synthesis and catalytic properties of mesoporous alumina supported aluminium chloride with controllable morphology, structure and component. J Porous Mater 19(5):597–604
Article
Google Scholar
Benítez-Guerrero M, Pérez-Maqueda LA, Sánchez-Jiménez PE, Pascual-Cosp J (2014) Characterization of thermally stable gamma alumina fibres biomimicking sisal. Microporous Mesoporous Mater 185:167–178
Article
Google Scholar
Hwang K-J, Kang D, Lee S et al (2014) Synthesis and characterization of hollow TiO2 fibers using Ceibantandra (L.) Gaertn. (kapok) as a natural template. Mater Lett 115:265–267
Article
Google Scholar
Shin Y, Exarhos GJ (2007) Conversion of cellulose materials into nanostructured ceramics by biomineralization. Cellulose 14:269–279
Article
Google Scholar
Patel M, Padhi BK (1990) Production of alumina fibre through jute fibre. J Mater Sci 25(2):1335–1343
Article
Google Scholar
Lu H, Zhang L, Xing W, Wang H, Xu N (2005) Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. Mater Chem Phys 94(2–3):322–327
Article
Google Scholar
Hu X, Wang X, Liu J, Zhang S, Jiang C, He X (2012) Fabrication of mesoporous dendritic silica nanofibers by using dendritic polyaniline templates. Mater Chem Phys 137(1):17–21
Article
Google Scholar
Fang X, Li S, Wang X, Fang F, Chu X, Wei Z, Li J, Chen X, Wanga F (2012) The growth and photocatalytic property of ZnO nanofibers synthesized by atom layer deposition using PVP nanofibers as templates. Appl Surf Sci 263:14–17
Article
Google Scholar
Xu G-R, Wang J-N, Li C-J (2013) Template directed preparation of TiO2 nanomaterials with tunable morphologies and their photocatalytic activity research. Appl Surf Sci 279:103–108
Article
Google Scholar
Niu T, Shen LM, Liu Y (2013) Preparation of meso-macroporous α-alumina using carbon nanotube as the template for the mesopore and their application to the preferential oxidation of CO in H2-rich gases. J Porous Mater 20(4):789–798
Article
Google Scholar
Roy AK, Knohl S, Goedel WA (2011) Alumina microtubes prepared via template-directed pulsed chemical vapor deposition (pulsed CVD). J Mater Sci 46(14):4812–4819
Article
Google Scholar
Zhang Y, Liu J, He R, Zhang Q, Zhang X, Zhu J (2002) Synthesis of alumina nanotubes using carbon nanotubes as templates. Chem Phys Lett 360(5–6):579–584
Article
Google Scholar
Vajtai R (ed) (2013) Springer handbook of nanomaterials, chapter 7. Carbon nanofiber. Springer, Berlin
Google Scholar
Kumar A (ed) (2010) Nanofibers. INTECH, Croatia
Google Scholar
Fink JK (2005) Reactive polymers fundamentals and applications. William Andrew Publishing
He H, Gao F (2015) Resin modification on interlaminar shear property of carbon fiber/epoxy/nano-CaCO3 hybrid composites. Polym Compos. doi:10.1002/pc.23775
Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos B Eng 39(6):933–961
Article
Google Scholar
Aly AA, Zeidan E-SB, Alshennawy AAA, El-Masry AA, Wasel WA (2012) Friction and wear of polymer composites filled by nano-particles: a review. World J Nano Sci Eng 2(1):32–39
Article
Google Scholar
Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol 63(14):2055–2067
Article
Google Scholar
Omrania A, Simonb LC, Rostamia AA (2009) The effects of alumina nanoparticle on the properties of an epoxy resin system. Mater Chem Phys 114(1):145–150
Article
Google Scholar
Dorigato A, Pegoretti A (2011) The role of alumina nanoparticles in epoxy adhesives. J Nanopart Res 13:2429–2441
Article
Google Scholar
Brown GM, Ellyin F (2010) Mechanical properties and multiscale characterization of nanofiber–alumina/epoxy nanocomposites. J Appl Polym Sci 119(3):1459–1468
Article
Google Scholar
Krushnamurty K, Rini M, Srikanth I, Ghosal P, Das AP, Deepa M, Subrahmanyam Ch (2016) Conducting polymer coated graphene oxide reinforced C–epoxy composites for enhanced electrical conduction. Compos A Appl Sci Manuf 80:237–243
Article
Google Scholar
Zhang G, Rasheva Z, Karger-Kocsis J, Burkhart T (2011) Synergetic role of nanoparticles and micro-scale short carbon fibers on the mechanical profiles of epoxy resin. Express Polym Lett 5(10):859–872
Article
Google Scholar
Li X, Liu W, Sun L, Aifantis KE, Yu B, Fan Y, Feng Q, Cui F, Watari F (2014) Resin composites reinforced by nanoscaled fibers or tubes for dental regeneration. BioMed Res Int. doi:10.1155/2014/542958
Miyagawa H, Mohanty A, Lawrence TD, Misra M (2004) Effect of clay and alumina–nanowhisker reinforcements on the mechanical properties of nanocomposites from biobased epoxy: a comparative study. Ind Eng Chem Res 43(22):7001–7009
Article
Google Scholar
Kim B-J, Bae K-M, An K-H, Park S-J (2012) Effects of surface nitrification on thermal conductivity of modified aluminum oxide nanofibers-reinforced epoxy matrix nanocomposites. Bull Korean Chem Soc 33(10):3258–3264
Article
Google Scholar
Mishakov IV, Strel’tsov IA, Vedyagin AA, Zaikovskii VI, Buyanov RA (2008) New rotor reactor for the synthesis of different morphological types of carbon nanofibers. XVIII Intern. Conference CHEMREACTOR-18, Malta, pp 135–136
Mishakov IV, Buyanov RA, Zaikovskii VI, Streltsov IA, Vedyagin AA (2008) Catalytic synthesis of nanosized feathery carbon structures via the carbide cycle mechanism. Kinet Catal 49(6):868–872
Article
Google Scholar
Buyanov RA, Krivoruchko OP (1987) Preparation of oxide catalysts: from the studies of the mechanisms of synthesis and crystallization towards control of properties. React Kinet Catal Lett 35(1):293–302
Article
Google Scholar
Chukin GD (2010) Structure aluminum oxide and catalysts. Mechanisms of reactions. Paladin, Printa Moscow
Google Scholar
Krivoshapkina EF, Petrakov AP, Krivoshapkin PV, Zubavichus YV, Melgunov MS (2013) Small-angle scattering of synchrotron radiation investigations of nanostructured alumina membranes synthesized by sol–gel method. J Sol-Gel Sci Technol 68:488–494
Article
Google Scholar
Zhang Y-X, Zhou H, Fan Y (2014) Dielectric properties of Al2O3 nanofibers/epoxy resin nanocomposites. Adv Mater Res 873:486–491
Article
Google Scholar
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemeniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619
Article
Google Scholar
West RD, Malhotra VM (2006) Rupture of nanoparticle agglomerates and formulation of Al2O3–epoxy nanocomposites using ultrasonic cavitation approach: effects on the structural and mechanical properties. Polym Eng Sci 46(4):426–430
Article
Google Scholar
Bittmann B, Haupert F, Schlarb AK (2009) Ultrasonic dispersion of inorganic nanoparticles in epoxy resin. Ultrason Sonochem 16(5):622–628
Article
Google Scholar
Dudkin BN, Zainullin GG, Krivoshapkin PV, Krivoshapkina EF, Ryazanov MA (2008) Influence of nanoparticles and nanofibers of aluminum oxide on the properties of epoxy composites. Glass Phys Chem 34(2):187–191
Article
Google Scholar
Sanctuary R, Baller J, Zielinski B, Becker N, Kruger JK, Philipp M, Muller U, Ziehmer M (2009) Influence of Al2O3 nanoparticles on the isothermal cure of an epoxy resin. J Phys Condens Mater 21:035118
Article
Google Scholar
Sitnikov PA, Belykh AG, Fedoseev MS, Vaseneva II, Kuchin AV (2009) Study of chemical processes in the modification of epoxide polymers by aluminum oxide. Russ J Gen Chem 79(12):2594–2598
Article
Google Scholar
Baller J, Thomassey M, Ziehmer M, Sanctuary R (2011) The catalytic influence of alumina nanoparticles on epoxy curing. Thermochim Acta 517(1–2):34–39
Article
Google Scholar
Sitnikov PA, Kuchin AV, Ryazanov MA, Belykh AG, Vaseneva IN, Fedoseev MS, Tereshatov VV (2014) Influence of acid-base properties of oxides surface on their reactivity towards epoxy compounds. Russ J Gen Chem 84(5):810–815
Article
Google Scholar