Skip to main content
  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:

Sol–gel template preparation of alumina nanofillers for reinforcing the epoxy resin

Abstract

Alumina nanofibers were prepared by sol–gel template method. Carbon nanofibers (CNFs) of feather-like morphology obtained by chemical vapor deposition of C2–C4 hydrocarbons mixture have been used as a template. The distinctive feature of CNF is a friable disordered structure consisting of separate fragments of graphite-like phase. To simplify the sol–gel synthetic procedure, the impact of preparative conditions such as type of precursor and ratio of starting components was studied. CNFs were coated with corresponding alumina precursor and subjected to a high temperature treatment. The resulted alumina nanofibers were explored by means of scanning electron microscopy (SEM), physical nitrogen adsorption (BET), and X-ray diffraction. The optimal Al2O3:CNF ratio was found to be 1:6. According to SEM and BET, surface area of prepared alumina fibers 70–90 nm in diameter lies in a range of 149–174 m2/g. The thermal and strength properties of epoxy composites reinforced with alumina nanofibers are compared. It was demonstrated that used nanofillers affect noticeably the properties of the epoxy matrix.

Graphical Abstract

 

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Wallenberger FT, Weston NE, Dunn SA (1990) Inviscid melt spinning: As-spun crystalline alumina fibers. J Mater Res 11:2682–2686

    Article  Google Scholar 

  2. Wallenberger FT, Weston NE, Motzfeldt K, Swartzfager DG (1992) Inviscid melt spinning of alumina fibers: chemical jet stabilization. J Am Ceram Soc 75(3):629–636

    Article  Google Scholar 

  3. Bunsell AR, Berger MH (1999) Fine ceramic fibers. Marcel Dekker, New York

    Google Scholar 

  4. Tan H, Zhang J, Bo H (2011) Continuous alumina gel fibers by sol-gel method using glycolic acid, aluminum nitrate and polyvinylpyrrolidone. Ceramics 55(3):276–279

    Google Scholar 

  5. Krivoshapkin PV, Krivoshapkina EF, Dudkin BN (2013) Growth and structure of microscale fibers as precursors of alumina nanofibers. J Phys Chem Solids 74(7):991–996

    Article  Google Scholar 

  6. Cottringer TE, Van De MRH, Bauer R, Yarbrough WA. Alumina sol-gel fiber. US Patent 1996; 5514631

  7. Shigapov AN, Graham GW, McCabe RW, Plummer HK Jr (2001) The preparation of high-surface area, thermally-stable, metal-oxide catalysts and supports by a cellulose templating approach. App Catal A Gen 210(1–2):287–300

    Article  Google Scholar 

  8. Fan T, Sun B, Gu J, Zhang D, Lau LWM (2005) Biomorphic Al2O3 fibers synthesized using cotton as bio-templates. Scr Mater 53(8):893–897

    Article  Google Scholar 

  9. Ma G, Ma Z, Zhang Z, Yang Z, Lei Z (2012) Synthesis and catalytic properties of mesoporous alumina supported aluminium chloride with controllable morphology, structure and component. J Porous Mater 19(5):597–604

    Article  Google Scholar 

  10. Benítez-Guerrero M, Pérez-Maqueda LA, Sánchez-Jiménez PE, Pascual-Cosp J (2014) Characterization of thermally stable gamma alumina fibres biomimicking sisal. Microporous Mesoporous Mater 185:167–178

    Article  Google Scholar 

  11. Hwang K-J, Kang D, Lee S et al (2014) Synthesis and characterization of hollow TiO2 fibers using Ceibantandra (L.) Gaertn. (kapok) as a natural template. Mater Lett 115:265–267

    Article  Google Scholar 

  12. Shin Y, Exarhos GJ (2007) Conversion of cellulose materials into nanostructured ceramics by biomineralization. Cellulose 14:269–279

    Article  Google Scholar 

  13. Patel M, Padhi BK (1990) Production of alumina fibre through jute fibre. J Mater Sci 25(2):1335–1343

    Article  Google Scholar 

  14. Lu H, Zhang L, Xing W, Wang H, Xu N (2005) Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. Mater Chem Phys 94(2–3):322–327

    Article  Google Scholar 

  15. Hu X, Wang X, Liu J, Zhang S, Jiang C, He X (2012) Fabrication of mesoporous dendritic silica nanofibers by using dendritic polyaniline templates. Mater Chem Phys 137(1):17–21

    Article  Google Scholar 

  16. Fang X, Li S, Wang X, Fang F, Chu X, Wei Z, Li J, Chen X, Wanga F (2012) The growth and photocatalytic property of ZnO nanofibers synthesized by atom layer deposition using PVP nanofibers as templates. Appl Surf Sci 263:14–17

    Article  Google Scholar 

  17. Xu G-R, Wang J-N, Li C-J (2013) Template directed preparation of TiO2 nanomaterials with tunable morphologies and their photocatalytic activity research. Appl Surf Sci 279:103–108

    Article  Google Scholar 

  18. Niu T, Shen LM, Liu Y (2013) Preparation of meso-macroporous α-alumina using carbon nanotube as the template for the mesopore and their application to the preferential oxidation of CO in H2-rich gases. J Porous Mater 20(4):789–798

    Article  Google Scholar 

  19. Roy AK, Knohl S, Goedel WA (2011) Alumina microtubes prepared via template-directed pulsed chemical vapor deposition (pulsed CVD). J Mater Sci 46(14):4812–4819

    Article  Google Scholar 

  20. Zhang Y, Liu J, He R, Zhang Q, Zhang X, Zhu J (2002) Synthesis of alumina nanotubes using carbon nanotubes as templates. Chem Phys Lett 360(5–6):579–584

    Article  Google Scholar 

  21. Vajtai R (ed) (2013) Springer handbook of nanomaterials, chapter 7. Carbon nanofiber. Springer, Berlin

    Google Scholar 

  22. Kumar A (ed) (2010) Nanofibers. INTECH, Croatia

    Google Scholar 

  23. Fink JK (2005) Reactive polymers fundamentals and applications. William Andrew Publishing

  24. He H, Gao F (2015) Resin modification on interlaminar shear property of carbon fiber/epoxy/nano-CaCO3 hybrid composites. Polym Compos. doi:10.1002/pc.23775

  25. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos B Eng 39(6):933–961

    Article  Google Scholar 

  26. Aly AA, Zeidan E-SB, Alshennawy AAA, El-Masry AA, Wasel WA (2012) Friction and wear of polymer composites filled by nano-particles: a review. World J Nano Sci Eng 2(1):32–39

    Article  Google Scholar 

  27. Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol 63(14):2055–2067

    Article  Google Scholar 

  28. Omrania A, Simonb LC, Rostamia AA (2009) The effects of alumina nanoparticle on the properties of an epoxy resin system. Mater Chem Phys 114(1):145–150

    Article  Google Scholar 

  29. Dorigato A, Pegoretti A (2011) The role of alumina nanoparticles in epoxy adhesives. J Nanopart Res 13:2429–2441

    Article  Google Scholar 

  30. Brown GM, Ellyin F (2010) Mechanical properties and multiscale characterization of nanofiber–alumina/epoxy nanocomposites. J Appl Polym Sci 119(3):1459–1468

    Article  Google Scholar 

  31. Krushnamurty K, Rini M, Srikanth I, Ghosal P, Das AP, Deepa M, Subrahmanyam Ch (2016) Conducting polymer coated graphene oxide reinforced C–epoxy composites for enhanced electrical conduction. Compos A Appl Sci Manuf 80:237–243

    Article  Google Scholar 

  32. Zhang G, Rasheva Z, Karger-Kocsis J, Burkhart T (2011) Synergetic role of nanoparticles and micro-scale short carbon fibers on the mechanical profiles of epoxy resin. Express Polym Lett 5(10):859–872

    Article  Google Scholar 

  33. Li X, Liu W, Sun L, Aifantis KE, Yu B, Fan Y, Feng Q, Cui F, Watari F (2014) Resin composites reinforced by nanoscaled fibers or tubes for dental regeneration. BioMed Res Int. doi:10.1155/2014/542958

  34. Miyagawa H, Mohanty A, Lawrence TD, Misra M (2004) Effect of clay and alumina–nanowhisker reinforcements on the mechanical properties of nanocomposites from biobased epoxy: a comparative study. Ind Eng Chem Res 43(22):7001–7009

    Article  Google Scholar 

  35. Kim B-J, Bae K-M, An K-H, Park S-J (2012) Effects of surface nitrification on thermal conductivity of modified aluminum oxide nanofibers-reinforced epoxy matrix nanocomposites. Bull Korean Chem Soc 33(10):3258–3264

    Article  Google Scholar 

  36. Mishakov IV, Strel’tsov IA, Vedyagin AA, Zaikovskii VI, Buyanov RA (2008) New rotor reactor for the synthesis of different morphological types of carbon nanofibers. XVIII Intern. Conference CHEMREACTOR-18, Malta, pp 135–136

  37. Mishakov IV, Buyanov RA, Zaikovskii VI, Streltsov IA, Vedyagin AA (2008) Catalytic synthesis of nanosized feathery carbon structures via the carbide cycle mechanism. Kinet Catal 49(6):868–872

    Article  Google Scholar 

  38. Buyanov RA, Krivoruchko OP (1987) Preparation of oxide catalysts: from the studies of the mechanisms of synthesis and crystallization towards control of properties. React Kinet Catal Lett 35(1):293–302

    Article  Google Scholar 

  39. Chukin GD (2010) Structure aluminum oxide and catalysts. Mechanisms of reactions. Paladin, Printa Moscow

    Google Scholar 

  40. Krivoshapkina EF, Petrakov AP, Krivoshapkin PV, Zubavichus YV, Melgunov MS (2013) Small-angle scattering of synchrotron radiation investigations of nanostructured alumina membranes synthesized by sol–gel method. J Sol-Gel Sci Technol 68:488–494

    Article  Google Scholar 

  41. Zhang Y-X, Zhou H, Fan Y (2014) Dielectric properties of Al2O3 nanofibers/epoxy resin nanocomposites. Adv Mater Res 873:486–491

    Article  Google Scholar 

  42. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemeniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  Google Scholar 

  43. West RD, Malhotra VM (2006) Rupture of nanoparticle agglomerates and formulation of Al2O3–epoxy nanocomposites using ultrasonic cavitation approach: effects on the structural and mechanical properties. Polym Eng Sci 46(4):426–430

    Article  Google Scholar 

  44. Bittmann B, Haupert F, Schlarb AK (2009) Ultrasonic dispersion of inorganic nanoparticles in epoxy resin. Ultrason Sonochem 16(5):622–628

    Article  Google Scholar 

  45. Dudkin BN, Zainullin GG, Krivoshapkin PV, Krivoshapkina EF, Ryazanov MA (2008) Influence of nanoparticles and nanofibers of aluminum oxide on the properties of epoxy composites. Glass Phys Chem 34(2):187–191

    Article  Google Scholar 

  46. Sanctuary R, Baller J, Zielinski B, Becker N, Kruger JK, Philipp M, Muller U, Ziehmer M (2009) Influence of Al2O3 nanoparticles on the isothermal cure of an epoxy resin. J Phys Condens Mater 21:035118

    Article  Google Scholar 

  47. Sitnikov PA, Belykh AG, Fedoseev MS, Vaseneva II, Kuchin AV (2009) Study of chemical processes in the modification of epoxide polymers by aluminum oxide. Russ J Gen Chem 79(12):2594–2598

    Article  Google Scholar 

  48. Baller J, Thomassey M, Ziehmer M, Sanctuary R (2011) The catalytic influence of alumina nanoparticles on epoxy curing. Thermochim Acta 517(1–2):34–39

    Article  Google Scholar 

  49. Sitnikov PA, Kuchin AV, Ryazanov MA, Belykh AG, Vaseneva IN, Fedoseev MS, Tereshatov VV (2014) Influence of acid-base properties of oxides surface on their reactivity towards epoxy compounds. Russ J Gen Chem 84(5):810–815

    Article  Google Scholar 

Download references

Acknowledgments

The study was performed using the equipment of the Center for Shared Use of Scientific Equipment “Khimiya” of the Institute of Chemistry, Komi Science Center, Ural Branch of the Russian Academy of Sciences. The reported study was funded by RFBR (Project 16-38-80093 mol_ev_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krivoshapkin, P.V., Mishakov, I.V., Krivoshapkina, E.F. et al. Sol–gel template preparation of alumina nanofillers for reinforcing the epoxy resin. J Sol-Gel Sci Technol 80, 353–361 (2016). https://doi.org/10.1007/s10971-016-4126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4126-9

Keywords

  • Alumina nanofibers
  • Carbon nanofibers
  • Sol–gel synthesis
  • Template method
  • Epoxy resin