Skip to main content
Log in

A new approach for preparation of free-standing nano-porous SiO2 films with a large area

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Free-standing nano-porous SiO2 films with high porosity on the scale of hundreds of microns were obtained by combing a parting agent method and layer-by-layer assembly method where betaine was employed as soluble layer and PAMS (poly-α-methylstyrene) was used as protective and thermal degradation sacrificial layer, respectively. The surface morphology, roughness, chemical composition and physical properties of the films were studied in this work. The thermal degradation property of PAMS and its effect on the preparation of free-standing film were also analyzed. The results indicated that the PAMS effectively protected the SiO2 films from damage during the detachment and transfer processes, and it can be completely removed after the film being calcined at 330 °C for 4 h. The thickness of the SiO2 films can be adjusted between 534 and 297 nm. Before calcination, the SiO2 film was hydrophobic and the process of dissolving betaine would not damage its structure nor influence its smoothness. After being calcined, the SiO2 film became hydrophilic, the refractive index increased from 1.19 to 1.20, and the porosity decreased from 56 to 53 %; the calcination process contributed to progress condensation of the polysiloxane network and removed organic groups from silica film. Employing PAMS as protective and thermal degradation sacrificial layer provides a new approach for preparation of other large-area free-standing films.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lommel B, Hartmann W, Kindler B, Klemm J, Steiner J (2002) Preparation of self-supporting carbon thin films. Nucl Instrum Methods A 480(1):199–203

    Article  Google Scholar 

  2. Liechtenstein VK, Ivkova TM, Olshanski ED, Golser R, Kutschera W, Steier P, Vockenhuber C, Repnow R, Hahn R, Friedrich M, Kreissig U (2004) Recent investigations and applications of thin diamond-like carbon (DLC) foils. Nucl Instrum Methods A 521(1):197–202

    Article  Google Scholar 

  3. Méens A, Nicoli MP, Raiser D (1997) Self-supporting beryllium oxide targets. Nucl Instrum Methods A 397(1):64–67

    Article  Google Scholar 

  4. Lommel B, Hartmann W, Huebner A, Kindler B, Steiner J (2011) Preparation of self-supporting nickel targets from 58Ni, 60Ni and 61Ni. Nucl Instrum Methods A 655(1):44–46

    Article  Google Scholar 

  5. Zhu X, Zhou B, Du A, Chen K, Li Y, Zhang Z, Shen J, Wu G, Ni X (2012) Potential SiO2/CRF bilayer perturbation aerogel target for ICF hydrodynamic instability experiment. Fusion Eng Des 87(2):92–97

    Article  Google Scholar 

  6. Levin J, Knoll L, Scheffel M, Schwalm D, Wester R, Wolf A, Baer A, Vager Z, Zajfman D, Liechtenstein VK (2000) Application of ultrathin diamond-like-carbon targets to Coulomb explosion imaging. Nucl Instrum Methods B 168(2):268–275

    Article  Google Scholar 

  7. Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42(9):4198–4216

    Article  Google Scholar 

  8. Feng D, Lv Y, Wu Z, Dou Y, Han L, Sun Z, Xia Y, Zheng G, Zhao D (2011) Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J Am Chem Soc 133(38):15148–15156

    Article  Google Scholar 

  9. Sim JS, Shi J, Ramanathan S (2014) Ultra-thin freestanding ceria membranes: layer transfer techniques and high temperature conductivity studies. J Mater Chem A 2(44):19019–19028

    Article  Google Scholar 

  10. Kerman K, Tallinen T, Ramanathan S, Mahadevan L (2013) Elastic configurations of self-supported oxide membranes for fuel cells. J Power Sources 22:359–366

    Article  Google Scholar 

  11. Peng X, Jin J, Ericsson ME, Ichinose I (2007) General method for ultrathin free-standing films of nanofibrous composite materials. J Am Chem Soc 129(27):8625–8633

    Article  Google Scholar 

  12. Nolte M, Schoeler B, Peyratout SC, Kurth DG, Fery A (2005) Filled microcavity arrays produced by polyelectrolyte multilayer membrane transfer. Adv Mater 17(13):1665–1669

    Article  Google Scholar 

  13. Yang H, Coombs N, Dag Ö, Sokolov I, Ozin GA (1997) Free-standing mesoporous silica films; morphogenesis of channel and surface patterns. J Mater Chem 7(9):1755–1761

    Article  Google Scholar 

  14. Yang B, Edler KJ (2009) Free-standing ordered mesoporous silica films synthesized with surfactant-polyelectrolyte complexes at the air/water interface. Chem Mater 21(7):1221–1231

    Article  Google Scholar 

  15. Park SS, Shin JH, Zhao D, Ha C (2010) Free-standing and bridged amine-functionalized periodic mesoporous organosilica films. J Mater Chem 20(36):7854–7858

    Article  Google Scholar 

  16. Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6(9):1880–1886

    Article  Google Scholar 

  17. Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276

    Article  Google Scholar 

  18. Cheng J, Rathi SJ, Stradins P, Frey GL, Collinse RT, Williams SKR (2014) Free standing silica thin films with highly ordered perpendicular nanopores. RSC Adv 4(15):7627–7633

    Article  Google Scholar 

  19. Ono SS, Decher G (2006) Preparation of ultrathin self-standing polyelectrolyte multilayer membranes at physiological conditions using pH-responsive film segments as sacrificial layers. Nano Lett 6(4):592–598

    Article  Google Scholar 

  20. Komor PM (1972) A simple technique of producing thin carbon films. Nucl Instrum Methods 102(3):485–486

    Article  Google Scholar 

  21. Fearon EM, Letts SA, Allison LM, Cook RC (1997) Adapting the decomposable mandrel technique to build specialty ICF targets. Fusion Sci Technol 31(4):406–410

    Google Scholar 

  22. McQuillan BW, Nikroo A, Steinman DA, Elsner FH, Czechowicz DG, Hoppe ML, Sixtus M, Miller EJ (1997) The PAMS/GDP process for production of ICF target mandrels. Fusion Sci Technol 31(4):381–384

    Article  Google Scholar 

  23. Takagi M, Cook R, McQuillan B, Elsner F, Stephens R, Nikroo A, Gibson J, Paguio S (2002) Development of high quality poly (α-methylstyrene) mandrels for NIF. Fusion Sci Technol 41(3P1):278–285

    Article  Google Scholar 

  24. McQuillan BW, Takagi M (2002) Removal of mode 10 surface ripples in ICF PAMS shells. Fusion Sci Technol 41(3P1):209–213

    Article  Google Scholar 

  25. Schultz KR, Kaae JL, Miller WJ, Steinman DA, Stephens RB (1999) Status of inertial fusion target fabrication in the USA. Fusion Eng Des 44(1):441–448

    Article  Google Scholar 

  26. Letts SA, Nissen AEH, Orthion PJ, Buckley SR, Fearon E, Chancellor C, Roberts CC, Parrish BK, Cook RC (2002) Vapor-deposited polyimide ablators for NIF: effects of deposition process parameters and solvent vapor smoothing on capsule surface finish. Fusion Sci Technol 41(3P1):268–277

    Google Scholar 

  27. Freitas VT, Fu L, Cojocariu AM, Cattoënet X, Bartlett JR, Parc RL, Bantignies JL, Man MWC, André PS, Ferreira RAS, Carlos LD (2015) Eu3+-based bridged silsesquioxanes for transparent luminescent solar concentrators. ACS Appl Mater Interface 7(16):8770–8778

    Article  Google Scholar 

  28. Zhong Y, Zhou B, Gui J, Du A, Zhang Z, Shen J (2011) Fabrication of multilayer graded density peeled-carbon-aerogel target. Fusion Eng Des 86(2):238–243

    Article  Google Scholar 

  29. Wang X, Shen J (2012) A review of contamination-resistant antireflective sol–gel coatings. J Sol-Gel Sci Technol 61(1):206–212

    Article  Google Scholar 

  30. Kesmez Ö, Kiraz N, Burunkaya E, Camurlu HE, Asiltürk M, Arpac E (2010) Effect of amine catalysts on preparation of nanometric SiO2 particles and antireflective films via sol–gel method. J Sol-Gel Sci Technol 56(2):167–176

    Article  Google Scholar 

  31. Li X, Zou L, Wu G, Shen J (2014) Laser-induced damage on ordered and amorphous sol–gel silica coatings. Opt Mater Express 4(12):2478–2483

    Article  Google Scholar 

  32. Li X, Gross M, Green K, Oreb B, Shen J (2012) Ultraviolet laser-induced damage on fused silica substrate and its sol–gel coating. Opt Lett 37(12):2364–2366

    Article  Google Scholar 

  33. Niu C, Wu X, Ren W, Chen X, Shi P (2015) Mechanical properties of low k SiO2 thin films templated by PVA. Ceram Int 41:S365–S369

    Article  Google Scholar 

  34. Philipavičius J, Kazadojev I, Beganskienė A, Melninkaitis A, Sirutkaitis V, Kareiva A (2008) Hydrophobic antireflective silica coatings via sol–gel process. Mater Sci 14:283–287

    Google Scholar 

  35. Liu Y, Shen J, Zhou B, Wu G, Zhang Z (2013) Effect of hydrophobicity on the stability of sol–gel silica coatings in vacuum and their laser damage threshold. J Sol-Gel Sci Technol 68(1):81–87

    Article  Google Scholar 

  36. Burkey DD, Gleason KK (2003) Structure and thermal properties of thin film poly (α-methylstyrene) deposited via plasma-enhanced chemical vapor deposition. Chem Vap Depos 9(2):65–71

    Article  Google Scholar 

  37. Quijano AG, Huerta F, Torres DS, Morallón E, Montilla F (2015) Electrochemical behaviour of PSS-functionalized silica films prepared by electroassisted deposition of sol–gel precursors. Electrocatalysis 6(1):33–41

    Article  Google Scholar 

  38. Innocenzi P, Falcaro P, Grosso D, Babonneau F (2003) Order-disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy. J Phys Chem B 107(20):4711–4717

    Article  Google Scholar 

  39. Wongcharee K, Brungs M, Chaplin R, Hong YJ, Pillar R, Sizgek E (2002) Sol–gel processing by aging and pore creator addition for porous silica antireflective coatings. J Sol-Gel Sci Technol 25(3):215–221

    Article  Google Scholar 

  40. Joseph R, Zhang S, Ford WT (1996) Structure and dynamics of a colloidal silica-poly (methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy. Macromolecules 29(4):1305–1312

    Article  Google Scholar 

  41. Haukka S, Root A (1994) The reaction of hexamethyldisilazane and subsequent oxidation of trimethylsilyl groups on silica studied by solid-state NMR and FTIR. J Phys Chem 98(6):1695–1703

    Article  Google Scholar 

  42. Li X, Shen J (2011) A scratch-resistant and hydrophobic broadband antireflective coating by sol–gel method. Thin Solid Films 519(19):6236–6240

    Article  Google Scholar 

  43. Zou L, Li X, Zhang Q, Shen J (2014) An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol–gel method. Langmuir 30(34):10481–10486

    Article  Google Scholar 

  44. Li X, Shen J (2011) The stability of sol–gel silica coatings in vacuum with organic contaminants. J Sol-Gel Sci Technol 59(3):539–545

    Article  Google Scholar 

  45. Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968

    Article  Google Scholar 

  46. Madras G, Smith JM, McCoy BJ (1996) Thermal degradation of poly (α-methylstyrene) in solution. Polym Degrad Stab 52(3):349–358

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National High Technology Research and Development Program of China (2013AA031801), National Science and technology support program of China (2013BAJ01B01), Science and Technology Innovation Fund of Shanghai Aerospace, China (SAST201469). Also, the authors would like to thank Prof. Junxiao Yang and Xiaoguang Li for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai Du or Bin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Wu, S., Du, A. et al. A new approach for preparation of free-standing nano-porous SiO2 films with a large area. J Sol-Gel Sci Technol 80, 267–276 (2016). https://doi.org/10.1007/s10971-016-4123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4123-z

Keywords

Navigation