Skip to main content
Log in

Investigations on absorption, photoluminescence and magnetic properties of ZnO: Co nanoparticles

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We have investigated the consequences of cobalt (Co) incorporation with different doping concentrations (0, 2, 4 and 6 %) on structural, optical and magnetic properties of ZnO nanoparticles. The results of X-ray diffraction spectra (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) pattern of single particle, energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) authenticate the substitution of cobalt and hexagonal crystal structure without any secondary phase formation of all the samples under investigation. The ultraviolet–visible (UV–Vis) absorption study indicates that increase in Co concentration improves the visible region absorption (550–700 nm). The absorption edge of Co-doped ZnO shifts towards visible region with increase in Co concentration. The band gap of samples shows a red shift with increase in Co percentage. The photoluminescence (PL) study of the samples indicates that Co doping shifts the intense peak position of ZnO from violet to blue colour. The weak emission peak at 572 nm is also observed in all the samples. The emission is represented by chromaticity diagram. The room temperature magnetic properties have been studied using vibrating sample magnetometer (VSM). The room temperature magnetisation curve shows that an increase in Co concentration increases the linear behaviour of M–H loop. The magnetic susceptibility results indicate that all the samples have Curie–Weiss behaviour. The coercive field (Hc) and the remanence magnetisation (Mr) increase with Co doping concentration.

Graphical Abstract

Fig. M–H curve of pure and cobalt-doped ZnO nanoparticles at 300 K. Inset (a) shows absorption spectra, and inset (b) shows the emission spectra of Zn1−x Co x O nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dolea BN, Mote VD, Huse VR, Purushotham Y, Lande MK, Jadhav KM, Shah SS (2011) Structural studies of Mn doped ZnO nanoparticles. Curr Appl Phys 11:762–766

    Article  Google Scholar 

  2. Bououdina M, Omri K, Hilo ME, Amiri AE, Lemine OM, Alyamani A, Hlil EK, Lassri H, Mir LE (2014) Structural and magnetic properties of Mn-doped ZnO nanocrystals. Physica E 56:107–112

    Article  Google Scholar 

  3. Rao GT, Stella RJ, Babu B, Ravindranadh K, Reddy CV, Shim J, Ravikumar RVSSN (2015) Structural, optical and magnetic properties of Mn2+doped ZnO–CdS composite nanopowder. Mater Sci Eng B 201:72–78

    Article  Google Scholar 

  4. Rekha K, Nirmala M, Nair MG, Anukaliani A (2010) Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys B 405:3180–3185

    Article  Google Scholar 

  5. Mandal SK, Das AK, Nath TK (2006) Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles. Appl Phys Lett 89:144105

    Article  Google Scholar 

  6. Kumar S, Basu S, Rana B, Barman A, Chatterjee S, Jha SN, Bhattacharyya D, Sahoo NK, Ghosh AK (2014) Structural, optical and magnetic properties of sol–gel derived ZnO: Co diluted magnetic semiconductor nanocrystals: an EXAFS study. J Mater Chem C 2:481

    Article  Google Scholar 

  7. Lia M, Xu J, Chen X, Zhang X, Wu Y, Ping L, Niu X, Luo C, Lan Li (2012) Structural and optical properties of cobalt doped ZnO nanocrystals. Superlattices Microstruct 52:824–833

    Article  Google Scholar 

  8. Abdullahi SS, Lu YK, Guner S, Kazan S, Kocaman B, Ndikilar CE (2015) Synthesis and characterization of Mn and Co codoped ZnO nanoparticles. Superlattices Microstruct 83:342–352

    Article  Google Scholar 

  9. Tsogbadrakh N, Choi EA, Lee WJ, Chang KJ (2011) Hole doping effect on ferromagnetism in Mn-doped ZnO nanowires. Curr Appl Phys 11:236–240

    Article  Google Scholar 

  10. Sato-Berru RY, Vazquez-Olmos A, Fernandez-Osorio AL, Sotres-Martınez S (2007) Micro-Raman investigation of transition-metal-doped ZnO nanoparticles. J Raman Spectrosc 38:1073–1076

    Article  Google Scholar 

  11. Gu F, Wang SF, Lu MK, Zhou GJ, Xu D, Yuan DR (2004) Structure evaluation and highly enhanced luminescence of Dy3+doped ZnO nanocrystals by Li+ doping via combustion method. Langmuir 20:3528–3531

    Article  Google Scholar 

  12. Jadwisienczak WM, Lozykowski HJ, Xu A, Patel B (2002) Visible emission from ZnO doped with rare-earth ions. J Electron Mater 31:776–784

    Article  Google Scholar 

  13. Li H, Zhang Z, Huang J, Liu R, Wang Q (2013) Optical and structural analysis of rare earth and Li co-doped ZnO nanoparticles. J Alloys Compd 550:526–530

    Article  Google Scholar 

  14. Basu S, Inamdar DY, Mahamuni S, Chakrabarti A, Kamal C, Kumar GRS, Jha N, Bhattacharyya D (2014) Local structure investigation of cobalt and manganese doped ZnO nanocrystals and its correlation with magnetic properties. J Phys Chem C118:9154–9164

    Google Scholar 

  15. Martínez B, Sandiumenge F, Ll Balcells (2005) Structure and magnetic properties of Co-doped ZnO nanoparticles. Phys Rev B 72:165202

    Article  Google Scholar 

  16. Ahmed F, Kumar S, Arshi N, Anwar MS, Koo BH, Lee CG (2012) Doping effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles. Microelectron Eng 89:129–132

    Article  Google Scholar 

  17. Rao CNR, Deepak FL (2005) Absence of ferromagnetism in Mn- and Co-doped ZnO. J Mater Chem 15:573–578

    Article  Google Scholar 

  18. Sato K, Katayama-Yoshida H (2000) Materials design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn J Appl Phys 2(39):L555

    Article  Google Scholar 

  19. Jalbout AF, Chen H, Whittenburg SL (2002) Monte Carlo simulation on the indirect exchange interactions of Co-doped ZnO film. Appl Phys Lett 81:2217

    Article  Google Scholar 

  20. Zia A, Shah NA, Ahmed S, Khan EU (2014) The influence of cobalt on the physical properties of ZnO nanostructures. Phys Scr 89:105802

    Article  Google Scholar 

  21. Arshad M, Azam A, Ahmed AS, Mollah S, Naqvi AH (2011) Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by sol–gel route. J Alloys Compd 509:8378–8381

    Article  Google Scholar 

  22. Gandhi V, Ganesan R, Syedahamed HHA, Thaiyan M (2014) Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation. Method J Phys Chem C118:9715–9725

    Google Scholar 

  23. Moussa H, Merlin C, Dezanet C, Balan L, Medjahdi G, Ben-Attia M, Schneider R (2016) Trace amounts of Cu2+ ions influence ROS production and cytotoxicity of ZnO quantum dots. J Hazard Mater 304:532–542

    Article  Google Scholar 

  24. Ponnusamy R, Sivasubramanian D, Sreekanth P, Gandhiraj V, Philip R, Bhalerao GM (2015) Nonlinear optical interactions of Co: ZnO nanoparticles in continuous and pulsed mode of operations. RSC Adv 5:80756–80765

    Article  Google Scholar 

  25. Ansari SA, Nisar A, Fatma B, Khan W, Naqvi AH (2012) Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route. Mater Sci Eng B 177:428–435

    Article  Google Scholar 

  26. Yan Q, Chen JZ, Tu MJ (2003) Study on voltage gradient and microstructure of ZnO varistor doped with La2O3. J Rare Earths 21:142

    Google Scholar 

  27. Zhou H, Yi D, Yu Z, Xiao L, Li J (2007) Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties. Thin Solid Films 515:6909

    Article  Google Scholar 

  28. Djaja NF, Montja DA, Saleh R (2013) The effect of Co incorporation into ZnO nanoparticles. Adv Mater Phys Chem 3:33–41

    Article  Google Scholar 

  29. Kumar S, Asokan K, Singh RK, Chatterjee S, Kanjila D, Ghosh AK (2014) Investigations on structural and optical properties of ZnO and ZnO: Co nanoparticles under dense electronic excitations. RSC Adv 4:62123–62131

    Article  Google Scholar 

  30. Hernández A, Maya L, Sánchez-Mora E, Sánchez EM (2007) Sol–gel synthesis, characterization and photocatalytic activity of mixed Oxide ZnO–Fe2O3. J Sol–Gel Sci Technol 42(1):71–78

    Article  Google Scholar 

  31. Shafique MA, Shah SA, Nafees M, Rasheed K, Ahmad R (2012) Effect of doping concentration on absorbance, structural, and magnetic properties of cobalt-doped ZnO nano-crystallites. Int Nano Lett 2:31

    Article  Google Scholar 

  32. Srinatha N, Nair KGM, Angadi B (2015) Microstructure, electronic structure and optical properties of combustion synthesized Co doped ZnO nanoparticles. Phys B 474:97–104

    Article  Google Scholar 

  33. Ramachandran S, Tiwari A, Narayan J (2004) Zn0.9Co0.1O-based diluted magnetic semiconducting thin films. Appl Phys Lett 84(25):5255–5257

    Article  Google Scholar 

  34. Liu XC, Shi EW, Chen ZZ, Zhang HW, Song LX, Wang H, Yao SD (2006) Structural, optical and magnetic properties of Co-doped ZnO films. J Cryst Growth 296:135–140

    Article  Google Scholar 

  35. Shatnawi M, Alsmadi AM, Bsoul I, Salameh B, Alna’washi GA, Al-Dweri F, EI Akkad F (2016) Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J Alloys Compd 655:244–252

    Article  Google Scholar 

  36. He R, Tan B, Ton-Hhat C, Phillips M, Tsuzuki T (2013) Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation. J Nanoparticle Res 15:2030

    Article  Google Scholar 

  37. Yang H, Nie S (2009) Preparation and characterization of Co-doped ZnO nanomaterials. Mater Chem Phys 114:279–282

    Article  Google Scholar 

  38. Wang XL, Luan CY, Shao Q, Pruna A, Leung CW, Lortz R, Zapien JA, Ruotolo A (2013) Effect of the magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films. Appl Phys Lett 102:102112

    Article  Google Scholar 

  39. Hammad TM, Salem JK, Harrison RG (2013) Structure, optical properties and synthesis of Co-doped ZnO superstructures. Appl Nanosci 3:133–139

    Article  Google Scholar 

  40. Kumar MA, Muthukumaran S (2015) Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu. J Magn Magn Mater 374:61–66

    Article  Google Scholar 

  41. Antony J, Pendyala S, Sharma A, Chen XB, Morrison J, Bergman L, Qiang Y (2005) Room temperature ferromagnetic and ultraviolet optical properties of Co-doped ZnO nanocluster films. J Appl Phys 97:10D307-1

    Article  Google Scholar 

  42. Kataoka T, Yamazaki Y, Sakamoto Y, Fujimori A, Chang F-H, Lin H-J, Huang DJ, Chen CT, Tanaka A, Mandal SK, Nath TK, Karmakar D, Dasgupta I (2010) Surface- and bulk-sensitive X-ray absorption study of the valence states of Mn and Co ions in Zn1−2x Mn x Co x O nanoparticles Appl. Phys Lett 96:252502

    Google Scholar 

  43. Kong YC, Yu DP, Zhang B, Fang SQ, Feng W (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78:407

    Article  Google Scholar 

  44. Pal B, Giri PK (2010) High temperature ferromagnetism and optical properties of Co doped ZnO nanoparticles. J Appl Phys 108:084322

    Article  Google Scholar 

  45. Pearton SJ, Heo WH, Ivill M, Norton DP, Steiner T (2004) Dilute magnetic semiconducting oxides. Semicond Sci Technol 19:R59

    Article  Google Scholar 

  46. Ghosh CK, Chattopadhyay KK, Mitra MK (2007) Effect of Co doping on the static dielectric constant of ZnO nanoparticles. J Appl Phys 101:124911

    Article  Google Scholar 

  47. Wang JB, Huang GJ, Zhong XL, Sun LZ, Zhou YC, Liu EH (2006) Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles. Appl Phys Lett 88:252502

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (PK) acknowledges the financial support from the Ministry of Human Resources and Development (MHRD) in the form of teaching assistantship. The authors are thankful to Prof. O. N. Srivastav and Prof. S. B. Rai, Department of Physics, Banaras Hindu University, Varanasi, India, for providing the TEM and UV characterisation facilities, respectively. We are also thankful to Department of Pharmaceutics, IIT (BHU), for FT-IR characterisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen C. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Pandey, P.C. Investigations on absorption, photoluminescence and magnetic properties of ZnO: Co nanoparticles. J Sol-Gel Sci Technol 80, 342–352 (2016). https://doi.org/10.1007/s10971-016-4119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4119-8

Keywords

Navigation