Skip to main content
Log in

Effect of sintering temperature on structural properties of LiMnPO4 cathode materials obtained by sol–gel method

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanostructured LiMnPO4 cathode materials were successfully achieved by sol–gel route with the aid of oxalic acid and nitric acid. The effects of sintering temperatures on structural properties especially strain and crystallite size were analysed. The structural crystallinity and average particle sizes (42–77 nm) of LiMnPO4 are significantly varied with respect to calcination temperatures. LiMnPO4 obtained at 700 °C exhibits superior electrochemical performance among the samples. It delivered initial discharge capacity of 103.4 mAh g−1 at 0.05 C. These results revealed that the sol–gel technique could be favourable method to produce nanosized LiMnPO4 as a cathode material for lithium ion batteries via optimizing calcination temperatures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hong Y, Tang Z, Zhang Z (2015) Enhanced electrochemical properties of LiMnPO4/C composites by tailoring polydopamine-derived carbon coating. Electrochim Acta 176:369–377

    Article  Google Scholar 

  2. Su J, Liu Z, Long Y, Yao H, Lv X (2015) Enhanced electrochemical performance of LiMnPO4/C prepared by microwave-assisted solvothermal method. Electrochim Acta 173:559–565

    Article  Google Scholar 

  3. Herrera JO, Fuentes LE, Díaz S, Torre D, Camacho H, Elizalde JT et al (2015) Synthesis and structural characterization of manganese olivine lithium phosphate. J Alloys Compd 643:S236–S240

    Article  Google Scholar 

  4. Zhu K, Zhang W, Du J, Liu X, Tian J, Ma H et al (2015) Reaction mechanism and influence of the experimental variables for solvothermal synthesized LiMnPO4 nanoplates. J Power Sources 300:139–146

    Article  Google Scholar 

  5. Kou L, Chen F, Tao F, Dong Y, Chen L (2015) High rate capability and cycle performance of Ce-doped LiMnPO4/C via an efficient solvothermal synthesis in water/diethylene glycol system. Electrochim Acta 173:721–727

    Article  Google Scholar 

  6. Dai E, Fang H, Yang B, Ma W, Dai Y (2015) Synthesis of vanadium doped LiMnPO4 by an improved solid-state method. Ceram Int 41:8171–8176

    Article  Google Scholar 

  7. Liu XM, Gao WL, Ji BM (2012) Synthesis of LiNi1/3 Co1/3Mn1/3O2 nanoparticles by modified Pechini method and their enhanced rate capability. J Sol Gel Sci Technol 61:56–61

    Article  Google Scholar 

  8. Jouybari YH, Asgari S (2011) Synthesis and electrochemical properties of LiNi0.8Co0.2O2 nanopowders for lithium ion battery applications. J Power Sources 196:337–342

    Article  Google Scholar 

  9. Zheng J, Ni L, Lu Y, Qin C, Liu P, Wu T et al (2015) High-performance, nanostructure LiMnPO4/C composites synthesized via one-step solid state reaction. J Power Sources 282:444–451

    Article  Google Scholar 

  10. Zhang L, Qu Q, Zhang L, Li J, Zheng H (2014) Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithiumion batteries. J Mater Chem A 2:711–719

    Article  Google Scholar 

  11. Gu Y, Wang H, Zhu Y, Wang L, Qian Y, Chu Y (2015) Hydrothermal synthesis of 3D-hierarchical hemoglobin-like LiMnPO4 microspheres as cathode materials for lithium ion batteries. Solid State Ionics 274:106–110

    Article  Google Scholar 

  12. Pan XL, Xu CY, Hong D, Fang HT, Zhen L (2013) Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode. Electrochim Acta 87:303–308

    Article  Google Scholar 

  13. Zhang W, Shan Z, Zhu K, Liu S, Liu X, Tian J (2015) LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance Li-ion batteries. Electrochim Acta 153:385–392

    Article  Google Scholar 

  14. Zhou F, Zhu P, Fu X, Chen R, Sun R, Wong C (2014) Comparative study of LiMnPO4 cathode materials synthesized by solvothermal methods using different manganese salts. CrystEngComm 16:766–774

    Article  Google Scholar 

  15. Guo H, Wu C, Xie J, Zhang S, Cao G, Zhao X (2014) Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process. J Mater Chem A 2:10581

    Article  Google Scholar 

  16. Zhu H-J, Liu X-M, Yang H, Shen X-D (2014) Effect of the stirring rate on physical and electrochemical properties of LiMnPO4 nanoplates prepared in a polyol process. Ceram Int 40:6699–6704

    Article  Google Scholar 

  17. Bhuwaneswari MS, Dimesso L, Jaegermann W (2010) Preparation of LiCoPO4 powders and films via sol–gel. J Sol-Gel Sci Technol 56:320–326

    Article  Google Scholar 

  18. Zhang Y, Wu X, Lin Y, Wang D, Zhang C, He D (2013) Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode material by a modified sol–gel method for lithium-ion battery. J Sol-Gel Sci Technol 68:169–174

    Article  Google Scholar 

  19. Zhao X, Baek D, Manuel J, Heo M, Yang R, Keun J et al (2012) Electrochemical properties of magnesium doped LiFePO4 cathode material prepared by sol–gel method. Mater Res Bull 47:2819–2822

    Article  Google Scholar 

  20. Sheng-kui Z, You W, Jie-qun LIU, Jian W (2012) Synthesis of LiMnPO4/C composite material for lithium ion batteries by sol gel method. Trans Nonferrous Met Soc China 22:2535–2540

    Article  Google Scholar 

  21. Zong J, Liu X (2014) Graphene nanoplates structured LiMnPO4/C composite for lithium-ion battery. Electrochim Acta 116:9–18

    Article  Google Scholar 

  22. Drezen T, Kwon N, Bowen P, Teerlinck I, Isono M, Exnar I (2007) Effect of particle size on LiMnPO4 cathodes. J Power Sources 174:949–953

    Article  Google Scholar 

  23. Yoshida J, Stark M, Holzbock J, Hüsing N, Nakanishi S, Iba H et al (2013) Analysis of the size effect of LiMnPO4 particles on the battery properties by using STEM-EELS. J Power Sources 226:122–126

    Article  Google Scholar 

  24. Michalska M, Lipińska L (2015) Sikora a., Ziółkowska D, Korona KP, Andrzejczuk M. Structural and morphological studies of manganese-based cathode materials for lithium ion batteries. J Alloys Compd 632:256–262

    Article  Google Scholar 

  25. Liu Y, Wang S, Tao D, Dai Y, Yu J (2015) Electrochemical characterization for lithium vanadium phosphate with different calcination temperatures prepared by the sol–gel method. Mater Charact 107:189–196

    Article  Google Scholar 

  26. Zuo PJ, Wang T, Cheng GY, Du CY, Ma YL, Cheng XQ et al (2013) Improved electrochemical performance of nano-crystalline Li2FeSiO4/C cathode material prepared by the optimization of sintering temperature. J Solid State Electrochem 17:1955–1959

    Article  Google Scholar 

  27. Muruganantham R, Sivakumar M, Subadevi R, Wu N (2015) A facile synthesis and characterization of LiFePO4/C using simple binary reactants with oxalic acid by polyol technique and other high temperature methods. J Mater Sci Mater Electron 26:2095–2106

    Article  Google Scholar 

  28. Jian XM, Wenren HQ, Huang S, Shi SJ, Wang XL, Gu CD et al (2014) Oxalic acid-assisted combustion synthesized LiVO3 cathode material for lithium ion batteries. J Power Sources 246:417–422

    Article  Google Scholar 

  29. Zhang L-L, Li Y, Peng G, Wang Z-H, Ma J, Zhang W-X et al (2012) High-performance Li3V2(PO4)3/C cathode materials prepared via a sol–gel route with double carbon sources. J Alloys Compd 513:414–419

    Article  Google Scholar 

  30. Liu X-M, Gao W-L, Ji B-M (2011) Synthesis of LiNi1/3Co1/3Mn1/3O2 nanoparticles by modified Pechini method and their enhanced rate capability. J Sol-Gel Sci Technol 61:56–61

    Article  Google Scholar 

  31. Yi T, Yin L, Ma Y, Shen H (2013) Lithium-ion insertion kinetics of Nb-doped LiMn2O4 positive-electrode material. Ceram Int 39:4673–4678

    Article  Google Scholar 

  32. Liu L, Song T, Han H, Park H, Xiang J, Liu Z et al (2015) Electrospun porous lithium manganese phosphate–carbon nanofibers as a cathode material for lithium ion batteries†. J Mater Chem A 3:17713–17720. doi:10.1039/C5TA03450G

    Article  Google Scholar 

  33. Dou J, Kang X, Wumaier T, Hua N, Han Y, Xu G (2012) Oxalic acid-assisted preparation of LiFePO4/C cathode material for lithium-ion batteries. J Solid State Electrochem 16:1925–1931

    Article  Google Scholar 

  34. Yao J, Shen C, Zhang P, Gregory DH, Wang L (2012) Enhanced cycle ability of spinel LiMn2O4 by controlling the phase purity and structural strain. J Phys Chem Solids 73:1390–1395

    Article  Google Scholar 

  35. Kwon SN, Song J, Mumm DR (2011) Effects of cathode fabrication conditions and cycling on the electrochemical performance of LiNiO2 synthesized by combustion and calcination. Ceram Int 37:1543–1548

    Article  Google Scholar 

  36. Reddy AJ, Kokila MK, Nagabhushana H, Chakradhar RPS, Shivakumara C, Rao JL et al (2011) Structural, optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis. J Alloys Compd 509:5349–5355

    Article  Google Scholar 

  37. Zhao M, Fu Y, Xu N, Li G, Wu M, Gao X (2014) High performance LiMnPO4/C prepared by a crystallite size control method. J Mater Chem A 2:15070

    Article  Google Scholar 

  38. Muruganantham R, Sivakumar M, Subadevi R (2015) Enhanced rate performance of multiwalled carbon nanotube encrusted olivine type composite cathode material using polyol technique. J Power Sources 300:496–506

    Article  Google Scholar 

  39. Xiao L, Guo Y, Qu D, Deng B, Liu H, Tang D (2013) Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials. J Power Sources 225:286–292

    Article  Google Scholar 

  40. Wang L, Zhou X, Guo Y (2010) Synthesis and performance of carbon-coated Li3V2(PO4)3 cathode materials by a low temperature solid-state reaction. J Power Sources 195:2844–2850

    Article  Google Scholar 

  41. Wang D, Cao L, Huang J, Wu J (2013) Effects of different chelating agents on the composition, morphology and electrochemical properties of LiV3O8 crystallites synthesized via sol–gel method. Ceram Int 39:3759–3764

    Article  Google Scholar 

  42. Naceur H, Megriche A, El Maaoui M (2014) Effect of sintering temperature on microstructure and electrical properties of Sr1−x (Na0.5Bi0.5) × Bi2Nb2O9 solid solutions. J Adv Ceram 3:17–30

    Article  Google Scholar 

  43. Syamimi NF, Amin Matori K, Lim WF, Abdul Aziz S, Mohd Zaid MH (2014) Effect of sintering temperature on structural and morphological properties of europium (III) oxide doped willemite. J Spectrosc 2014:1–9

    Article  Google Scholar 

  44. Ju SH, Kim DW (2013) Effect of calcination temperature on the structure and electrochemical performance of LiMn1.5Ni0.5O4 cathode materials. Bull Korean Chem Soc 34:59–62

    Article  Google Scholar 

  45. Guo X, Yan H, Zhao S, Li Z, Li Y, Liang X (2013) Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature. Adv Powder Technol 24:1034–1038

    Article  Google Scholar 

  46. Shirsath SE, Kadam RH, Gaikwad AS, Ghasemi A, Morisako A (2011) Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4. J Magn Magn Mater 323:3104–3108

    Article  Google Scholar 

  47. Rosaiah P, Hussain OM (2014) Microscopic and spectroscopic properties of hydrothermally synthesized nano-crystalline LiFePO4 cathode material. J Alloys Compd 614:13–19

    Article  Google Scholar 

  48. Kim T, Park H, Lee M, Lee S, Song H (2012) Restricted growth of LiMnPO4 nanoparticles evolved from a precursor seed. J Power Sources 210:1–6

    Article  Google Scholar 

  49. Markevich E, Sharabi R, Haik O, Borgel V, Salitra G, Aurbach D et al (2011) Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines. J Power Sources 196:6433–6439

    Article  Google Scholar 

  50. Korona KP, Papierska J, Kamińska M, Witowski A, Michalska M, Lipińska L (2011) Raman measurements of temperature dependencies of phonons in LiMnPO4. Mater Chem Phys 127:391–396

    Article  Google Scholar 

  51. Zhao C, Hu Z, Zhou Y, Fang S, Cai S (2015) Synthesis of 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 cathode materials using 3-D urchin-like MnO2 as precursor for high performance lithium ion battery. J Nanopart Res 17:89

    Article  Google Scholar 

  52. Zheng JM, Wu XB, Yang Y (2011) A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim Acta 56:3071–3078

    Article  Google Scholar 

  53. Cai Y, Huang Y, Wang X, Jia D, Pang W, Guo Z et al (2015) Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. J Power Sources 278:574–581

    Article  Google Scholar 

  54. Chen Z, Cao L, Chen L, Zhou H, Zheng C, Xie K et al (2015) Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes. J Power Sources 298:355–362

    Article  Google Scholar 

  55. Chen Y, Xie K, Pan Y, Zheng C (2011) Nano-sized LiMn2O4 spinel cathode materials exhibiting high rate discharge capability for lithium-ion batteries. J Power Sources 196:6493–6497

    Article  Google Scholar 

  56. Das B, Pohl A, Chakravadhanula VSK, Kübel C, Fichtner M (2014) LiF/Fe/V2O5 nanocomposite as high capacity cathode for lithium ion batteries. J Power Sources 267:203–211

    Article  Google Scholar 

  57. Xu D, Wang P, Shen B (2016) Synthesis and characterization of sulfur-doped carbon decorated LiFePO4 nanocomposite as high performance cathode material for lithium-ion batteries. Ceram Int 42:5331–5338

    Article  Google Scholar 

  58. Wang Z-K, Shu J, Zhu Q-C, Cao B-Y, Chen H, Wu X-Y et al (2016) Graphene-nanosheet-wrapped LiV3O8 nanocomposites as high performance cathode materials for rechargeable lithium-ion batteries. J Power Sources 307:426–434

    Article  Google Scholar 

  59. Wang Y, Zhu B, Wang Y, Wang F (2016) Solvothermal synthesis of LiFePO4 nanorods as high-performance cathode materials for lithium ion batteries. Ceram Int 42:10297–10303

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank financial support from the University of Malaya for the PPP Grant PG 099 –2014B and Fundamental Research Grant Scheme (FP012-2015A) from Ministry of Higher Education, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajammal, K., Sivakumar, D., Duraisamy, N. et al. Effect of sintering temperature on structural properties of LiMnPO4 cathode materials obtained by sol–gel method. J Sol-Gel Sci Technol 80, 514–522 (2016). https://doi.org/10.1007/s10971-016-4111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4111-3

Keywords

Navigation