Journal of Sol-Gel Science and Technology

, Volume 79, Issue 2, pp 395–404 | Cite as

Magnetic core–shell nanoparticles coated with a molecularly imprinted organogel for organophosphate hydrolysis

  • Davide Carboni
  • Barbara Lasio
  • Luca Malfatti
  • Plinio Innocenzi
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • 151 Downloads

Abstract

Catalytic core–shell nanoparticles were obtained by coating an iron oxide core with a hybrid organic–inorganic silica shell using vinyl-triethoxy-silane and amino-propyl-triethoxy-silane. The amino group was further functionalised with arginine, used as catalytic moiety for the inactivation of organophosphate pesticides through hydrolysis. By exploiting the vinyl groups of the organosilica as anchorage, an additional outer layer made by molecularly imprinted organogel was built up through high-dilution radical polymerisation. The resulting organogel contains the imprinting complex, which derives from the guanidinium groups of the arginine and the organophosphate used as molecular template. The removal of the organophosphate from the imprinted cavities allowed obtaining core–shell magnetic nanoparticles with a molecularly imprinted acrylamide-based outer layer. These nanoparticles are capable of hydrolysing the commercial pesticide Paraoxon with a reaction rate 50 % faster than the corresponding background hydrolysis.

Graphical Abstract

Keywords

Magnetic core–shell nanoparticles Molecularly imprinted organogels Organophosphate pesticides Catalytic nanomaterials 

References

  1. 1.
    Guodong D, Pei W, Ying T, Jun Z, Yu G, Xiaojin W, Rong S, Guoquan W, Xiaoming S (2012) Environ Sci Technol 46:2911CrossRefGoogle Scholar
  2. 2.
    Kumar S, Kaushik G, Villarreal-Chiu JF (2016) Environ Sci Pollut Res. doi:10.1007/s11356-016-6294-0 Google Scholar
  3. 3.
    Whitcombe MJ, Kirsch N, Nicholls IA (2014) J Mol Recognit 27:297CrossRefGoogle Scholar
  4. 4.
    Haupt K, Linares AV, Bompart M, Bui BTS (2012) Top Curr Chem 325:1CrossRefGoogle Scholar
  5. 5.
    Resmini M, Flavin K, Carboni D (2012) Top Curr Chem 325:307CrossRefGoogle Scholar
  6. 6.
    Resmini M (2012) Anal Bioanal Chem 402:3021CrossRefGoogle Scholar
  7. 7.
    Carboni D, Flavin K, Servant A, Gouverneur V, Resmini M (2008) Chem Eur J 14:7059Google Scholar
  8. 8.
    Carboni D, Malfatti L, Pinna A, Lasio B, Tokudome Y, Takahashi M, Innocenzi P (2013) New J Chem 37:2995CrossRefGoogle Scholar
  9. 9.
    Pinna A, Lasio B, Carboni D, Marceddu S, Malfatti L, Innocenzi P (2014) J Nanopart Res 16:2463CrossRefGoogle Scholar
  10. 10.
    Costacurta S, Malfatti L, Innocenzi P, Amenitsch H, Masili A, Corrias A, Casula MF (2008) Microporous Mesoporous Mater 115:338CrossRefGoogle Scholar
  11. 11.
    Lebeau B, Innocenzi P (2011) Chem Soc Rev 40:886CrossRefGoogle Scholar
  12. 12.
    Carboni D, Pinna A, Malfatti L, Innocenzi P (2014) New J Chem 38:1635CrossRefGoogle Scholar
  13. 13.
    Carboni D, Pinna A, Amenitsch H, Casula MF, Loche D, Malfatti L, Innocenzi P (2015) Phys Chem Chem Phys 17:10679CrossRefGoogle Scholar
  14. 14.
    Jiang Y, Carboni D, Pinna A, Marmiroli B, Malfatti L, Innocenzi P (2016) J Synchrotron Radiat 23:267CrossRefGoogle Scholar
  15. 15.
    Maddock SC, Pasetto P, Resmini M (2004) Chem Commun (Camb) 5:536CrossRefGoogle Scholar
  16. 16.
    Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk HR (2007) Z Krist Suppl 26:125CrossRefGoogle Scholar
  17. 17.
    Hou Y, Yu J, Gao S (2003) J Mater Chem 13:1983CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Davide Carboni
    • 1
  • Barbara Lasio
    • 1
  • Luca Malfatti
    • 1
  • Plinio Innocenzi
    • 1
  1. 1.Laboratorio di Scienza dei Materiali e Nanotecnologie, LMNT - D.A.D.U., CR-INSTMUniversità di SassariAlgheroItaly

Personalised recommendations