Journal of Sol-Gel Science and Technology

, Volume 81, Issue 1, pp 42–51 | Cite as

Low-density, transparent aerogels and xerogels based on hexylene-bridged polysilsesquioxane with bendability

  • Yosuke Aoki
  • Taiyo Shimizu
  • Kazuyoshi Kanamori
  • Ayaka Maeno
  • Hironori Kaji
  • Kazuki Nakanishi
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Abstract

Low-density, transparent aerogels based on a hexylene-bridged polysilsesquioxane ([O1.5Si–(CH2)6–SiO1.5]n) network have been prepared for the first time via a simple sol–gel process. An optimized base-catalyzed one-step hydrolysis–polycondensation process of a bridged alkoxysilane precursor 1,6-bis(trimethoxysilyl)hexane in a low-polarity solvent N,N-dimethylformamide allows for the formation of a pore structure of a length scale of several tens nanometers, resulting in low-density, transparent aerogels after supercritical drying. Because of the incorporated organic moiety that bridges the silicon atoms in the network, these aerogels show higher flexibility and strength against compression and bending as compared to silica aerogel counterparts. In addition, minimizing the residual silanol groups in the network by a surface modification with hexamethyldisilazane has further improved resilience after compression and bending flexibility and strength, due to the decreased chance of the irreversible formation of the siloxane bonds upon compression. The resulting trimethylsilylated hydrophobic gels have been subjected to ambient pressure drying to obtain xerogels, resulting in low-density (0.13 g cm−3, 90 % porosity), transparent (71 % transmittance) xerogels. These results are promising for the development of transparent thermal superinsulators applicable to window insulating systems that manage heat transfer in a more efficient way.

Graphical Abstract

Keywords

Bridged polysilsesquioxane Hexylene Aerogels Xerogels Optical and mechanical properties 

References

  1. 1.
    Hüsing N, Schubert U (1998) Aerogels-airy materials: chemistry structure and properties. Angew Chem Int Ed 37:22–45CrossRefGoogle Scholar
  2. 2.
    Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265CrossRefGoogle Scholar
  3. 3.
    Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6:941–968CrossRefGoogle Scholar
  4. 4.
    Kanamori K (2013) Recent progress in aerogel science and technology. Adv Porous Mater 1:147–163CrossRefGoogle Scholar
  5. 5.
    Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741CrossRefGoogle Scholar
  6. 6.
    Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogels; synthesis properties and characterization. J Mater Process Tech 199:10–26CrossRefGoogle Scholar
  7. 7.
    Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43:761–769CrossRefGoogle Scholar
  8. 8.
    Koebel M, Rigacci A, Achard PJ (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63:315–339CrossRefGoogle Scholar
  9. 9.
    Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3:613–626CrossRefGoogle Scholar
  10. 10.
    Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2003) Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. J Non-Cryst Solids 330:187–195CrossRefGoogle Scholar
  11. 11.
    Rao AV, Bhagat SD, Hirashima H, Pajonk GM (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci 300:279–285CrossRefGoogle Scholar
  12. 12.
    Martín L, Ossó JO, Ricart S, Roig A, Garcíad O, Sastred R (2008) Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties. J Mater Chem 18:207–213CrossRefGoogle Scholar
  13. 13.
    Guo H, Nguyen BN, McCorkle LS, Shonkwiler B, Meador MAB (2009) Elastic low density aerogels derived from bis[3-(triethoxysilyl)propyl]disulfide tetramethylorthosilicate and vinyltrimethoxysilane via a two-step process. J Mater Chem 19:9054–9062CrossRefGoogle Scholar
  14. 14.
    Meador MAB, Fabrizio EF, Ilhan F, Dass A, Zhang G, Vassilaras P, Johnston JC, Leventis N (2005) Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials. Chem Mater 17:1085–1098CrossRefGoogle Scholar
  15. 15.
    Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical physical and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem Mater 18:285–296CrossRefGoogle Scholar
  16. 16.
    Mulik S, Sotiriou-Leventis C, Churu G, Lu H, Leventis N (2008) Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization. Chem Mater 20:5035–5046CrossRefGoogle Scholar
  17. 17.
    Nakanishi K, Kanamori K (2005) Organic–inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J Mater Chem 15:3776–3786CrossRefGoogle Scholar
  18. 18.
    Dong H, Brook MA, Brennan JD (2005) A new route to monolithic methylsilsesquioxanes: gelation behavior of methyltrimethoxysilane and morphology of resulting methylsilsesquioxanes under one-step and two-step processing. Chem Mater 17:2807–2816CrossRefGoogle Scholar
  19. 19.
    Cao W, Hunt AJ (1994) Improving the visible transparency of silica aerogels. J Non Cryst Solids 176:18–25CrossRefGoogle Scholar
  20. 20.
    Emmerling A, Petricevic R, Beck A, Wang P, Scheller H, Fricke J (1995) Relationship between optical transparency and nanostructural features of silica aerogels. J Non Cryst Solids 185:240–248CrossRefGoogle Scholar
  21. 21.
    Lu X, Arduini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972CrossRefGoogle Scholar
  22. 22.
    Aravind PR, Shajesh P, Soraru GD, Warrier KGK (2010) Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels. J Sol–Gel Sci Technol 54:105–117CrossRefGoogle Scholar
  23. 23.
    Schwertfeger F, Schmidt DFM (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non Cryst Solids 225:24–29CrossRefGoogle Scholar
  24. 24.
    Land VD, Harris TM, Teeters DC (2001) Processing of low-density silica gel by critical point drying or ambient pressure drying. J Non Cryst Solids 283:11–17CrossRefGoogle Scholar
  25. 25.
    Hæreid S, Anderson J, Einarsrud MA, Hua DW, Smith DM (1995) Thermal and temporal aging of TMOS-based aerogel precursors in water. J Non Cryst Solids 185:221–226CrossRefGoogle Scholar
  26. 26.
    Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19:1589–1593CrossRefGoogle Scholar
  27. 27.
    Kanamori K, Nakanishi K, Hanada T (2009) Sol–gel synthesis porous structure and mechanical property of polymethylsilsesquioxane aerogels. J Ceram Soc Jpn 117:1333–1338CrossRefGoogle Scholar
  28. 28.
    Hayase G, Kanamori K, Nakanishi K (2012) Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n-hexadecyltrimethylammonium chloride. Microporous Mesoporous Mater 158:247–252CrossRefGoogle Scholar
  29. 29.
    Kurahashi M, Kanamori K, Takeda K, Kaji H, Nakanishi K (2012) Role of block copolymer surfactant on the pore formation in methylsilsesquioxane aerogel systems. RSC Adv 2:7166–7173CrossRefGoogle Scholar
  30. 30.
    Kanamori K (2014) Monolithic silsesquioxane materials with well-defined pore structure. J Mater Res 29:2773–2786CrossRefGoogle Scholar
  31. 31.
    Shea KJ, Loy DA (2001) Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials. Chem Mater 13:3306–3319CrossRefGoogle Scholar
  32. 32.
    Hu LC, Shea KJ (2011) Organo–silica hybrid functional nanomaterials: how do organic bridging groups and silsesquioxane moieties work hand-in-hand. Chem Soc Rev 40:688–695CrossRefGoogle Scholar
  33. 33.
    Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv Mater 19:1403–1419CrossRefGoogle Scholar
  34. 34.
    Hatton B, Landskron K, Whitnall W, Perovic D, Ozin GA (2005) Past present and future of periodic mesoporous organosilicas-the PMOs. Acc Chem Res 38:305–312CrossRefGoogle Scholar
  35. 35.
    Mizoshita N, Tani T, Inagaki S (2011) Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem Soc Rev 40:789–800CrossRefGoogle Scholar
  36. 36.
    Baugher BM, Loy DA, Prabakar S, Assink RA, Shea KJ, Oviatt H (1995) Porosity in hexylene-bridged polysilsesquioxanes. Effects of monomer concentration. Mater Res Soc Symp Proc 371:253–259Google Scholar
  37. 37.
    Loy DA, Jamison GM, Baugher BM, Russick EM, Assink RA, Prabakar S, Shea KJ (1995) Alkylene-bridged polysilsesquioxane aerogels: highly porous hybrid organic–inorganic materials. J Non Cryst Solids 186:44–53CrossRefGoogle Scholar
  38. 38.
    Boday DJ, Stover RJ, Muriithi B, Loy DA (2012) Mechanical properties of hexylene- and phenylene-bridged polysilsesquioxane aerogels and xerogels. J Sol–Gel Sci Technol 61:144–150CrossRefGoogle Scholar
  39. 39.
    Boday DJ, Stover RJ, Muriithi B, Loy DA (2011) Strong low density hexylene- and phenylene-bridged polysilsesquioxane aerogel-polycyanoacrylate composites. J Mater Sci 46:6371–6377CrossRefGoogle Scholar
  40. 40.
    Obrey KAD, Wilson KV, Loy DA (2011) Enhancing mechanical properties of silica aerogels. J Non Cryst Solids 357:3435–3441CrossRefGoogle Scholar
  41. 41.
    Wang Z, Dai Z, Wu J, Zhao N, Xu J (2013) Vacuum-dried robust bridged silsesquioxane aerogels. Adv Mater 25:4494–4497CrossRefGoogle Scholar
  42. 42.
    Yun S, Luo H, Gao Y (2015) Low-density hydrophobic highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels. J Mater Chem A 3:3390–3398CrossRefGoogle Scholar
  43. 43.
    Wang Z, Wang D, Qian Z, Guo J, Dong H, Zhao N, Xu J (2015) Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications. ACS Appl Mater Interfaces 7:2016–2024CrossRefGoogle Scholar
  44. 44.
    Chujo Y, Saegusa T (1992) Organic polymer hybrids with silica gel formed by means of the sol–gel method. Adv Polym Sci 100:11–29CrossRefGoogle Scholar
  45. 45.
    Ogoshi T, Chujo Y (2005) Organic–inorganic polymer hybrids prepared by the sol–gel method. Compos Interfaces 11:539–566CrossRefGoogle Scholar
  46. 46.
    Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112CrossRefGoogle Scholar
  47. 47.
    Cerveau G, Corriu RJP, Framery E (2000) Sol–gel process: influence of the temperature on the textural properties of organosilsesquioxane materials. J Mater Chem 10:1617–1622CrossRefGoogle Scholar
  48. 48.
    Loy DA, Obrey-DeFriend KA, Wilson KV Jr, Minke M, Baugher BM, Baugher CR, Schneider DA, Jamison GM, Shea KJ (2013) Influence of the alkoxide group solvent catalyst and concentration on the gelation and porosity of hexylene-bridged polysilsesquioxanes. J Non Cryst Solids 362:82–94CrossRefGoogle Scholar
  49. 49.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego, pp 373–384Google Scholar
  50. 50.
    Yokogawa H, Yokoyama M (1995) Hydrophobic silica aerogels. J Non Cryst Solids 186:23–29CrossRefGoogle Scholar
  51. 51.
    Shewale PM, Rao AV, Rao AP (2008) Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels. Appl Surf Sci 254:6902–6907CrossRefGoogle Scholar
  52. 52.
    Orgaz F, Rawson H (1986) Characterization of various stages of the sol–gel process. J Non Cryst Solids 82:57–68CrossRefGoogle Scholar
  53. 53.
    Ogata M, Kinjo N, Kawata T (1993) Effects of crosslinking on physical properties of phenol-formaldehyde Novolac cured epoxy resins. J Appl Polym Sci 48:583–601CrossRefGoogle Scholar
  54. 54.
    Kjøniksen AL, Nyström B (1996) Effects of polymer concentration and cross-linking density on rheology of chemically cross-linked poly(vinyl alcohol) near the gelation threshold. Macromolecules 29:5215–5222CrossRefGoogle Scholar
  55. 55.
    Xiong L, Hu X, Liu X, Tong Z (2008) Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility. Polymer 49:5064–5071CrossRefGoogle Scholar
  56. 56.
    Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis properties and characterization. J Mater Process Technol 199:10–26CrossRefGoogle Scholar
  57. 57.
    Kanamori K (2011) Organic–inorganic hybrid aerogels with high mechanical properties via organotrialkoxysilane-derived sol–gel process. J Ceram Soc Jpn 119:16–22CrossRefGoogle Scholar
  58. 58.
    Thorne-Banda H, Miller T (2011) In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New YorkGoogle Scholar
  59. 59.
    Prakash SS, Brinker CJ, Hurd AJ, Rao SM (1995) Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374:439–443CrossRefGoogle Scholar
  60. 60.
    Scherer GW (1992) Stress development during supercritical drying. J Non Cryst Solids 145:33–40CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yosuke Aoki
    • 1
  • Taiyo Shimizu
    • 1
  • Kazuyoshi Kanamori
    • 1
  • Ayaka Maeno
    • 2
  • Hironori Kaji
    • 2
  • Kazuki Nakanishi
    • 1
  1. 1.Department of Chemistry, Graduate School of ScienceKyoto UniversitySakyo-kuJapan
  2. 2.Division of Environmental Chemistry, Institute for Chemical ResearchKyoto UniversityGokasho, UjiJapan

Personalised recommendations