Advertisement

Journal of Sol-Gel Science and Technology

, Volume 79, Issue 3, pp 497–509 | Cite as

Immobilisation of organophosphate hydrolase on mesoporous and Stöber particles

  • Nina Frančič
  • Aljoša Košak
  • Aleksandra LobnikEmail author
Original Paper: Sol-gel and hybrid materials with surface modification for applications

Abstract

Hexahistidine-tagged organophosphate hydrolase (His6-OPH), an organophosphate degrading enzyme, immobilised by physical adsorption and covalent binding methods on mesoporous silica (MPS) particles, was examined as a biocatalyst for organophosphate hydrolysis within an aqueous medium and for providing an efficient tool in the detection/detoxification of paraoxon. His6-OPH was immobilised on mesoporous silica particles of different pore size distributions (10–40 and 6 nm) and sizes (5 μm and 500 nm), through covalent attachment and physical adsorption. The biocatalysts showed good activities and enhanced stabilities with respect to the free enzymes, depending on the material and used immobilisation technique.

Graphical Abstract

Biomaterial based on hexahistidine-tagged organophosphorus hydrolase (His6-OPH) was developed by enzyme immobilisation into/onto two types of silica particles with different porosity. While adsorbed enzymes showed higher activities, covalent attached enzymes showed minimal or no losses in activity as well as reusability.

Keywords

Mesoporous silica particles Functionalisation Enzyme immobilisation Organophosphate detection/detoxification Stöber particles 

Notes

Acknowledgments

This work was supported by a grant from the Slovenian Research Agency (ARRS) for Young researchers (1000-08-310045).

References

  1. 1.
    Wei Y, Xu J, Feng Q, Dong H, Lin M (2000) Matt Letters 40:6CrossRefGoogle Scholar
  2. 2.
    Bickerstaff GF (1997) Immobilization of enzymes and cells. Humana Press, TotovaGoogle Scholar
  3. 3.
    Geimer P (1992) Immobilized Biosystems in Enzyme Engineering. Ellis Horwood, West SussexGoogle Scholar
  4. 4.
    Taylor R (1991) Protein Immobilization: Fundamentals and Applications. Mmarcel Dekker, New YorkGoogle Scholar
  5. 5.
    Sheldon RA (2007) Adv Synth Catal 349:1289CrossRefGoogle Scholar
  6. 6.
    Wang Y, Hsieh (2008) J Membr Sci 309:71CrossRefGoogle Scholar
  7. 7.
    Krajewska B (2004) Enzyme Microb Technol 35:126CrossRefGoogle Scholar
  8. 8.
    Cao L (2005) Carrier-bound immobilized enzymes: principles, applications and design. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  9. 9.
    Ma J, Zhang L, Liang Z, Zhang Y (2007) J Sep Sci 30:3050CrossRefGoogle Scholar
  10. 10.
    Johnson P, Whately TL (1971) J Colloid Interface Sci 37:557CrossRefGoogle Scholar
  11. 11.
    Avnir D, Braun S, Lev O, Ottolenghi M (1994) Chem Mater 6:1605CrossRefGoogle Scholar
  12. 12.
    Reetz MT, Zonta A, Simpelkamp J (1995) Angew Chem Int Ed 34:301CrossRefGoogle Scholar
  13. 13.
    Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013CrossRefGoogle Scholar
  14. 14.
    Eggers DK, Valentine JS (2001) Protein Sci 10:250CrossRefGoogle Scholar
  15. 15.
    Hanefeld U, Gardossi L, Magner E (2009) Chem Soc Rev 38:453CrossRefGoogle Scholar
  16. 16.
    Hudson S, Cooney J, Magner E (2008) Angew Chem Int Ed 47:8582CrossRefGoogle Scholar
  17. 17.
    Lei CH, Shin Y, Magnuson JK, Fryxell G, Lasure LL, Elliott DC, Liu J, Ackerman EJ (2006) Nanotechnology 17:5531CrossRefGoogle Scholar
  18. 18.
    Deere J, Magner E, Wall JG, Hodnett BK (2002) J Phys Chem B 106:7340CrossRefGoogle Scholar
  19. 19.
    Liu J, Shin Y, Nie ZM, Chang JH, Wang LQ, Fryxell GE, Samuels WD, Exarhos GJ (2000) J Phys ChemA 104:8328CrossRefGoogle Scholar
  20. 20.
    Efremenko EN, Sergeeva VS (2001) Rus Chem Bull (Int Ed) 50:1826CrossRefGoogle Scholar
  21. 21.
    Votchitseva YA, Efremenko EN, Aliev TK, Volfomeyev SD (2006) Biochemistry 71:167Google Scholar
  22. 22.
    Sirotkina M, Lyagin I, Efremenko E (2012) Int Biodeterior Biodegrad 68:18CrossRefGoogle Scholar
  23. 23.
    Lyagin IV, Efremenko EN, Kabanov AV (2014) Moscow Univ Chem Bull 69:125CrossRefGoogle Scholar
  24. 24.
    Frančič N, Bellino MG, Soler-Illia GJAA, Lobnik A (2014) Analyst 139:3127CrossRefGoogle Scholar
  25. 25.
    Frančič N, Lyagun I, Efremenko EN, Lobnik A (2015) J Sol-Gel Sci Technol 74:387CrossRefGoogle Scholar
  26. 26.
    Lee CH, Lang J, Yen CW, Shih PC, Lin TS, Mou CY (2005) J Phys Chem B 109:12277CrossRefGoogle Scholar
  27. 27.
    Wang Y, Caruso F (2005) Chem Mater 17:953CrossRefGoogle Scholar
  28. 28.
    Hartmann M (2005) Chem Mater 17:4577CrossRefGoogle Scholar
  29. 29.
    Yiu HHP, Wright PA (2005) J Mater Chem 15:3690CrossRefGoogle Scholar
  30. 30.
    LeJeune KE, Russell AJ (1996) Biotechnol Bioeng 51:450CrossRefGoogle Scholar
  31. 31.
    Caldwell SR, Raushel FM (1991) Appl Biochem Biotechnol 31:59CrossRefGoogle Scholar
  32. 32.
    Havens PL, Rase HF (1993) Ind Eng Chem Res 32:2254–2258CrossRefGoogle Scholar
  33. 33.
    LeJeune KE, Mesiano AJ, Bower SB, Grimsley JK, Wild JR, Russell AJ (1997) Biotechnol Bioeng 54:105CrossRefGoogle Scholar
  34. 34.
    LeJeune KE, Swers JS, Hetro AD, Donahey GP, Russell AJ (1999) Biotechnol Bioeng 64:250CrossRefGoogle Scholar
  35. 35.
    Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J, Ramanculov E, Simonian A (2010) Colloids Surf B 77:69CrossRefGoogle Scholar
  36. 36.
    Dennis PB, Walker AY, Dickerson MB, Kaplan DL, Naik RR (2012) Biomacromolecules 13:2037CrossRefGoogle Scholar
  37. 37.
    Dosoretz C, Armon R, Starosvetzky J, Rothschild N (1996) J Sol-Gel Sci Technol 7:7CrossRefGoogle Scholar
  38. 38.
    Gill I, Ballesteros AJ (1998) Am Chem Soc 120:8587CrossRefGoogle Scholar
  39. 39.
    Singh AK, Flounders AW, Volponi JV, Ashley CS, Wally K, Schoeniger JS (1999) Biosens Bioelectron 14:703CrossRefGoogle Scholar
  40. 40.
    Flounders AW, Sigh AK, Volponi JV, Carincher SC, Wally K, Simonian AS, Wild JR (1999) Schoeniger JS 14:715Google Scholar
  41. 41.
    Frančič N, Bellinio M, Soler-Illia GAJJ, Lobnik A (2011) Analyst 139:3127Google Scholar
  42. 42.
    Gill I, Ballesteros A (2000) Biotechnol Bioeng 70:400CrossRefGoogle Scholar
  43. 43.
    Frenkel-Mullerad H, Avnir D (2005) J Am Chem Soc 127:8077CrossRefGoogle Scholar
  44. 44.
    Frančič N, Košak A, Lyagin I, Efremenko EN, Lobnik A (2011) Anal Bioanal Chem 401:2631CrossRefGoogle Scholar
  45. 45.
    Blin JL et al (2005) Chem Mater 17:1479CrossRefGoogle Scholar
  46. 46.
    Fadnavis NW et al (2003) Biotechnol Prog 19:346CrossRefGoogle Scholar
  47. 47.
    Pierre A (2004) Biocat Biotrans 22:145CrossRefGoogle Scholar
  48. 48.
    Lei C, Shin Y, Ackerman EJ (2002) J Am Chem Soc 124:11242CrossRefGoogle Scholar
  49. 49.
    Lei C, Valenta MM, Saripalli KP, Ackerman EJ (2007) J Environ Qual 36:233CrossRefGoogle Scholar
  50. 50.
    Chen B, Lei C, Shin Y, Liu J (2009) Biochem Biophys Res Commun 390:1177CrossRefGoogle Scholar
  51. 51.
    Efremenko E, Votchitseva Y, Plieva F, Galaev I, Mattiasson B (2006) Appl Microbiol Biotechnol 70:558CrossRefGoogle Scholar
  52. 52.
    Schulz-Ekloff G, Rathouský J, Zukal A (1999) Int J Inorg Mater 1:97CrossRefGoogle Scholar
  53. 53.
    Bradford MM (1976) Anal Biochem 72:248CrossRefGoogle Scholar
  54. 54.
    Cornish-Bowden A (2012) Fundamentals of Enzyme Kinetics, 4th edn. Wiley-Blackwell, WeinheimGoogle Scholar
  55. 55.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  56. 56.
    Machado RSA, da Fonseca MG, Arakaki LNH, Espinola JGP, Oliveira SF (2004) Talanta 63:317CrossRefGoogle Scholar
  57. 57.
    Blitz IP, Blitz JP, Gunko VM, Sheeran DJ (2007) Colloids Surf Physicochem Eng Aspects 307:83CrossRefGoogle Scholar
  58. 58.
    Manu V, Mody HM, Bajaj HC, Jasra RV (2009) Ind Eng Chem Res 48:8954CrossRefGoogle Scholar
  59. 59.
    Sakka S (2005) Handbook of sol-gel science and technology, Processing, characterization and applications; Volume II: Characterization of sol-gel materials and products, Kluwer Academic Publisher, p65–89Google Scholar
  60. 60.
    Chong ASM, Zhao XS (2003) J Phys Chem B 107:12650CrossRefGoogle Scholar
  61. 61.
    White LD, Tripp CP (2000) J Colloid Interface Sci 232:400CrossRefGoogle Scholar
  62. 62.
    Jarzębski AB, Szymańska K, Bryjak J, Mrowiec-Białoń J (2007) Catal Today 124:2CrossRefGoogle Scholar
  63. 63.
    Zhang X, Zhang F, Chan KY (2004) Scr Mater 51:343CrossRefGoogle Scholar
  64. 64.
    Yoshitake H, Yokoi T, Tatsumi T (2002) Chem Mater 14:4610Google Scholar
  65. 65.
    Barth A, Zscherp C (2002) Q Rev Biophys 35:639CrossRefGoogle Scholar
  66. 66.
    Barth A (2007) Biochim Biophys Acta-bioenergetisc 1767:1073CrossRefGoogle Scholar
  67. 67.
    Van de Weert M, Haris PI, Hennink WE (2005) Anal Biochem 297:160CrossRefGoogle Scholar
  68. 68.
    Deere J, Serantoni M, Edler KJ, Hodnett BK, Wall JG, Magner E (2004) Langmuir 20:532CrossRefGoogle Scholar
  69. 69.
    Essa H, Magner E, Cooney J, Hodnett BK (2007) J Mol Catal B Enzym 49:61CrossRefGoogle Scholar
  70. 70.
    Goradia D, Cooney J, Hodnett BK, Magner E (2005) J Mol Catal B Enzym 32:231CrossRefGoogle Scholar
  71. 71.
    Yiu HHP, Wright PA, Botting NP (2001) Microporous Mesoporous Mater 44–45:763CrossRefGoogle Scholar
  72. 72.
    Yiu HHP, Wright PA, Botting NP (2001) J Mol Catal B: Enzymol 15:81CrossRefGoogle Scholar
  73. 73.
    Gerhartz W (1990) General production methods, In Enzymes in industry: Production and applications. Wiley, New York, p 67Google Scholar
  74. 74.
    Carlsson N, Gustafsson H, Thörn C, Olsson L, Holmberg K (2014) Åkerman B 205:339Google Scholar
  75. 75.
    Bass JD, Grosso D, Boissiere C, Belamie E, Coradin T, Sanchez C (2007) Chem Mater 19:4349CrossRefGoogle Scholar
  76. 76.
    Malfatti L, Bellino MG, Innocenzi P, Soler-Illia GJAA (2009) Chem Mater 21:2763CrossRefGoogle Scholar
  77. 77.
    Bellino MG, Tropper I, Duran H, Regazzoni AE, Soler-Illia GJAA (2010) Small 6:1221CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nina Frančič
    • 1
  • Aljoša Košak
    • 1
  • Aleksandra Lobnik
    • 1
    Email author
  1. 1.Faculty of Mechanical Engineering, Centre of Sensor TechnologyUniversity of MariborMariborSlovenia

Personalised recommendations