Journal of Sol-Gel Science and Technology

, Volume 79, Issue 2, pp 295–302 | Cite as

In situ growth of Ag nanoparticles in graphene–TiO2 mesoporous films induced by hard X-ray

  • Luca Malfatti
  • Davide Carboni
  • Alessandra Pinna
  • Barbara Lasio
  • Benedetta Marmiroli
  • Plinio Innocenzi
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • 112 Downloads

Abstract

The controlled growth of Ag nanoparticles into graphene–TiO2 mesoporous films has been triggered by hard X-ray exposure provided by a synchrotron storage ring. The kinetic process has been studied by UV–visible spectroscopy as a function of the X-ray dose and compared to the nanoparticle growth induced in a bare mesoporous titania matrix. The graphene layers act as a preferential nucleation sites, allowing a faster nucleation of the nanoparticles. Moreover, the growth of larger nanoparticles is also promoted as a function of the exposure dose. The combined bottom-up and top-down approach to fabricate nanocomposites porous films embedding both graphene and plasmonic nanoparticles is expected to be a fundamental tool for the design of new analytical platforms based on the enhancement of the Raman signals.

Graphical Abstract

Keywords

Exfoliated graphene Mesoporous films Nanocomposites Silver nanoparticles 

References

  1. 1.
    Innocenzi P, Malfatti L, Carboni D (2015) Nanoscale 7:12759CrossRefGoogle Scholar
  2. 2.
    Malfatti L, Falcaro P, Pinna A, Lasio B, Casula MF, Loche D, Falqui A, Marmiroli B, Amenitsch H, Sanna R, Mariani A, Innocenzi P (2014) ACS Appl Mater Interfaces 6:795CrossRefGoogle Scholar
  3. 3.
    Carboni D, Lasio L, Loche D, Casula MF, Mariani A, Malfatti L, Innocenzi P (2015) J Phys Chem Lett 6:3149CrossRefGoogle Scholar
  4. 4.
    Innocenzi P, Malfatti L (2013) Chem Soc Rev 42:4198CrossRefGoogle Scholar
  5. 5.
    Carboni D, Lasio B, Alzari V, Mariani A, Loche D, Casula M F, Malfatti L, Innocenzi P (2014) Phys Chem Chem Phys 16:25809Google Scholar
  6. 6.
    Costacurta S, Malfatti L, Innocenzi P, Amenitsch H, Masili A, Corrias A, Casula MF (2008) Micropor Mesopor Mater 115:338CrossRefGoogle Scholar
  7. 7.
    Hess DM, Naik RR, Rinaldi C, Tomczak MM, Watkins JJ (2009) Chem Mater 21:2125CrossRefGoogle Scholar
  8. 8.
    Buso D, Falcaro P, Costacurta S, Guglielmi M, Martucci A, Innocenzi P, Malfatti L, Bello V, Mattei G, Sada C, Amenitsch H, Gerdova I, Haché A (2005) Chem Mater 17:4965CrossRefGoogle Scholar
  9. 9.
    Besson S, Gacoin T, Ricolleau C, Jacquiod C, Boilot J-P (2002) Nano Lett 2:409CrossRefGoogle Scholar
  10. 10.
    Malfatti L, Marongiu D, Costacurta S, Falcaro P, Amenitsch H, Marmiroli B, Grenci G, Casula MF, Innocenzi P (2010) Chem Mater 22:2132CrossRefGoogle Scholar
  11. 11.
    Malfatti L, Falcaro P, Marmiroli B, Amenitsch H, Piccinini M, Falqui A, Innocenzi P (2011) Nanoscale 3:3760CrossRefGoogle Scholar
  12. 12.
    Fuertes MC, Marchena M, Marchi MC, Wolosiuk A, Soler-Illia GJAA (2009) Small 5:272CrossRefGoogle Scholar
  13. 13.
    Martínez ED, Bellino MG, Soler-Illia GJAA (2009) ACS Appl Mater Interfaces 1:746CrossRefGoogle Scholar
  14. 14.
    Innocenzi P, Malfatti L, Marmiroli B, Falcaro P (2014) J Sol-Gel Sci Technol 70:236CrossRefGoogle Scholar
  15. 15.
    Pinna A, Lasio B, Piccinini M, Marmiroli B, Amenitsch H, Falcaro P, Tokudome Y, Malfatti L, Innocenzi P (2013) ACS Appl Mater Interfaces 5:3168CrossRefGoogle Scholar
  16. 16.
    Innocenzi P, Malfatti L, Falcaro P (2012) Soft Matter 8:3722CrossRefGoogle Scholar
  17. 17.
    Falcaro P, Costacurta S, Malfatti L, Takahashi M, Kidchob T, Casula MF, Piccinini M, Marcelli A, Marmiroli B, Amenitsch H, Schiavuta P, Innocenzi P (2008) 20:1864Google Scholar
  18. 18.
    Medda SK, Kundu D, De G (2003) J Non-Cryst Solids 318:149CrossRefGoogle Scholar
  19. 19.
    Green AA, Hersam MC (2010) J Phys Chem Lett 1:544CrossRefGoogle Scholar
  20. 20.
    Innocenzi P, Malfatti L, Lasio B, Pinna A, Loche D, Casula MF, Alzari V, Mariani A (2014) N J Chem 38:3777CrossRefGoogle Scholar
  21. 21.
    Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Phys Rep 473:51CrossRefGoogle Scholar
  22. 22.
    Falcaro P, Costacurta S, Malfatti L, Buso D, Patelli A, Schiavuta P, Piccinini M, Grenci G, Marmiroli B, Amenitsch H, Innocenzi P (2011) ACS Appl Mater Interfaces 3:245CrossRefGoogle Scholar
  23. 23.
    Bois L, Chassagneux F, Battie Y, Bessueille F, Mollet L, Parola S, Destouches N, Toulhoat N, Moncoffre N (2010) Langmuir 26:1199CrossRefGoogle Scholar
  24. 24.
    Gotoh K, Kinumoto T, Fujii E, Yamamoto A, Hashimoto H, Ohkubo T, Itadani A, Kuroda Y, Ishida H (2011) Carbon 49:1118CrossRefGoogle Scholar
  25. 25.
    Moon G, Kim H, Shinc Y, Choi W (2012) RSC Adv 2:2205CrossRefGoogle Scholar
  26. 26.
    Crepaldi EL, Soler-Illia GJAA, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) J Am Chem Soc 125:9776CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Luca Malfatti
    • 1
  • Davide Carboni
    • 1
  • Alessandra Pinna
    • 1
  • Barbara Lasio
    • 1
  • Benedetta Marmiroli
    • 2
  • Plinio Innocenzi
    • 1
  1. 1.Laboratorio di Scienza dei Materiali e Nanotecnologie, LMNT-D.A.D.U., CR-INSTMUniversità di SassariAlgheroItaly
  2. 2.Institute of Inorganic ChemistryGraz University of TechnologyGrazAustria

Personalised recommendations