Skip to main content
  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:

Synthesis of HA/β-TCP bioceramic foams from natural products


A novel technology for the preparation of bioceramic foams (BF) using a simple and economic procedure is presented. This technology combines two conventional methods to produce a tridimensional macroporous structure by using a sol–gel route, submitted afterward to a microwave treatment and thermal annealing. The use of agri-waste products on this procedure, such as egg shell and white egg recycle, represents an interesting way for waste management while developing potential commercial biomaterials. The use of egg shell as eco-compatible reactant instead of commercial ones and the egg white as foaming agent to produce a tridimensional macroporous structures has been optimized by using a sol–gel route. The crystalline phase and quantitative phase composition has been studied by Rietveld refinement and the optimization of the foaming process and determination of interconnected porosity by scanning electron microscopy, Hg porosimetry and X-ray micro-CT imaging. Our results show that BF samples showed a composition of 60 wt% HA (hydroxyapatite) and 40 wt% β-TCP (β-tricalcium phosphate) with a total porosity of approx. 70 % and a porosity ranging from 5 to 300 μm. These features indicate that BF samples are ideal for bone regeneration, and they are produced in an easy and environmental friendly viable process.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Rhind SM (2009) Anthropogenic pollutants: a threat to ecosystem sustainability? Philos Trans R Soc Lond B Biol Sci 364:3391–3401

    Article  Google Scholar 

  2. 2.

    Ibrahim A, Wei W, Zhang D, Wang H, Li J (2013) Conversion of waste eggshells to mesoporous hydroxyapatite nanoparticles with high surface area. Mater Lett 110:195–197

    Article  Google Scholar 

  3. 3.

    Kamalanathan P, Ramesh S, Bang LT, Niakan A, Tan CY, Purbolaksono J et al (2014) Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor. Ceram Int 40:16349–16359

    Article  Google Scholar 

  4. 4.

    Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW (2007) Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater 3:910–918

    Article  Google Scholar 

  5. 5.

    Akram M, Ahmed R, Shakir I, Ibrahim WAW, Hussain R (2014) Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci 49:1461–1475

    Article  Google Scholar 

  6. 6.

    Ni M, Ratner BD (2003) Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. Biomaterials 24:4323–4331

    Article  Google Scholar 

  7. 7.

    Wu SC, Tsou HK, Hsu HC, Hsu SK, Liou SP, Ho WF (2013) A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram Int 39:8183–8188

    Article  Google Scholar 

  8. 8.

    Vallet-Regí M, Arcos D (2008) Biomimetic nanoceramics in clinical use. RSC Nanosci Nanotechnol, Cambridge

    Google Scholar 

  9. 9.

    Choi AH, Ben-Nissan B (2007) Sol–gel production of bioactive nanocoatings for medical applications. Part II: current research and development. Nanomedicine 2:51–61

    Article  Google Scholar 

  10. 10.

    Abdulrahman I, Tijani HI, Mohammed BA, Saidu H, Yusuf H, Jibrin MN et al (2014) From garbage to biomaterials: an overview on egg shell based hydroxyapatite. J Mater 80:2467–2473

    Google Scholar 

  11. 11.

    Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69

    Article  Google Scholar 

  12. 12.

    Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052

    Article  Google Scholar 

  13. 13.

    Yashima M, Sakai A, Kamiyama T, Hoshikawa A (2003) Crystal structure analysis of β-tricalcium phosphate by neutron powder diffraction. J Solid State Chem 175:272–277

    Article  Google Scholar 

  14. 14.

    Hotaling NA, Bharti K, Kriel H, Simon CG Jr (2015) DiameterJ: a validated open source nanofiber diameter measurement tool. Biomaterials 61:327–338

    Article  Google Scholar 

  15. 15.

    Doube M, Kłosowski MM, Arganda-Carreras I, Cordeliéres F, Dougherty RP, Jackson J, Schmid B, Hutchinson JR, Shefelbine SJ (2010) Free and extensible bone image analysis in ImageJ. Bone J 47:1076–1079

    Article  Google Scholar 

  16. 16.

    Downs RT, Bartelmehs KL, Bibbs GV (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. Am Mineral 78:1104–1107

    Google Scholar 

  17. 17.

    Balzar D (1999) In: Snyder RL, Bunge HJ, Fiala J (eds) Defect and microstructure analysis by diffraction. University Press, Oxford, p 94–126

  18. 18.

    Vallet-Regi M, González-Calbet JM (2004) Calcium phosphates in the substitution of bone tissue. Prog Solid State Chem 32:1–31

    Article  Google Scholar 

  19. 19.

    Rivera EM, Araiza M, Brostow W, Castaño VM, Díaz-Estrada JR, Hernández R et al (1999) Synthesis of hydroxyapatite from egg-shells. Mater Lett 41:128–134

    Article  Google Scholar 

  20. 20.

    Vallet-Regí M (2001) Ceramics for medical applications. J Chem Soc Dalton Trans 2:97–108

    Article  Google Scholar 

  21. 21.

    Liu DM, Troczynskia T, Tseng WJ (2002) Aging effect on the phase evolution of water-based sol–gel hydroxyapatite. Biomaterials 23:1227–1236

    Article  Google Scholar 

  22. 22.

    Vallet-Regí M, Rodríguez Lorenzo LM, Salinas AJ (1997) Synthesis and characterisation of calcium deficient apatite. Solid State Ionics 101–103:1279

    Article  Google Scholar 

  23. 23.

    Sánchez-Salcedo S, Nieto A, Vallet-Regí M (2008) Hydroxyapatite/ß-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem Eng J 137:62–71

    Article  Google Scholar 

  24. 24.

    Kwon SH, Jun YK, Hong SH, Kim HE (2003) Preparation of porous biphasic calcium phosphate-gelatin nanocomposite for bone tissue engineering. J Eur Ceram Soc 23:1039

    Article  Google Scholar 

  25. 25.

    Silva SN, Pereira MM, Goes AM, Leite MF (2003) Effect of biphasic calcium phosphate on human macrophage functions in vitro. J Biomed Mater Res 65A:475–481

    Article  Google Scholar 

  26. 26.

    Toquet J, Rohanizadeh R, Guicheux J, Couillaud S, Passuti N, Daculsi G et al (1999) Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic. J Biomed Mater Res 44:98–108

    Article  Google Scholar 

  27. 27.

    Salinas A, Vallet-Regi M (2007) Evolution of ceramics with medical applications. Z Anorg Allg Chem 633:1762–1773

    Article  Google Scholar 

  28. 28.

    Dauculsi G, Jegooux F, Layrolle P (2010) Advanced biomaterials. Fundamentals, processing and applications. In: Basu B, Katti D, Kumar A (eds) The micro macroporous BCP concept for bine reconstruction and tissue engineering. Wiley, p. 101

  29. 29.

    Malard O, Bouler JM, Guicheux J, Heymann D, Pilet P, Coquard C et al (1999) Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J Biomed Mater Res 46:103–111

    Article  Google Scholar 

  30. 30.

    Gauthier O, Bouler JM, Weiss P, Bosco J, Daculsi G, Aguado E (1999) Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes. J Biomed Mater Res 47:28–35

    Article  Google Scholar 

  31. 31.

    Sánchez-Salcedo S, Balas F, Izquierdo-Barba I, Vallet-Regí M (2009) In-vitro structural changes in porous HA/β-TCP scaffolds under simulated body fluid. Acta Biomater 5:2738–2751

    Article  Google Scholar 

  32. 32.

    Mugonia C, Montorsib M, Siligardia C, Andreolaa F, Lancellottia I, Bernardoc E et al (2015) Design of glass foams with low environmental impact. Ceram Int 41:3400–3408

    Article  Google Scholar 

  33. 33.

    Oliveira DA, Benelli P, Amante ER (2013) A literature review on adding value to solid residues: egg shells. J Clean Prod 46:42–47

    Article  Google Scholar 

  34. 34.

    Amante ER (1997) Proposições metodológicas para a minimização de resíduos de fecularias e das indústiras processadoras de aves, suínos e pescado do Estado de Santa Catarina. UFSC, Florianópolis

    Google Scholar 

Download references


The authors would like to acknowledge the Ministry of Economy and Competitiveness (MINECO), Spain, for funding through projects MAT2012-35556 and CSO2010-11384-E (Agening Network of Excellence) and Agencia Española de Cooperación Internacional para el Desarrollo (AECID). Authors would like to thank M. Chevalier from Dpto. de Radiología of Física Médica of Universidad Complutense de Madrid for their technical support on X-ray μ-CT measurements.

Author information



Corresponding author

Correspondence to Maria Vallet-Regí.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Salcedo, S., Vila, M., Diaz, A. et al. Synthesis of HA/β-TCP bioceramic foams from natural products. J Sol-Gel Sci Technol 79, 160–166 (2016).

Download citation


  • Bioceramics
  • Regeneration bone defects
  • Biological waste
  • Recycling