Skip to main content

Sol–gel synthesis of composite powders in the TiO2–TeO2–SeO2 system

Abstract

The aim of this paper is to study the gel formation tendency in the TiO2–TeO2–SeO2 system. Telluric acid (H6TeO6), selenous acid (H2SeO3) and titanium butoxide were used as precursors dissolved in ethylene glycol. Transparent monolithic and bright yellow colored gels are situated between 40–100 mol% TiO2, up to 20 mol% SeO2 and 65 mol% TeO2. The phase transformations of the as-prepared gels heat-treated up to 700 °C are investigated by XRD. The chemical states of C, Ti, Se and Te are characterized by means of XPS. Organic and OH groups participate in the amorphous organic–inorganic structure up to 250–300 °C. The structure of the inorganic amorphous phases above 300 °C consists of SeO3, TiO6 and TeOn structural units. The UV–Vis spectra of the binary and three-component gels exhibited a redshift of the cutoff in comparison with those of Ti butoxide gel due to the presence of selenium and tellurium units.

Graphical Abstract

Gel formation region in the ternary TiO2–TeO2–SeO2 system

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    El-Malawany R (2002) Tellurite glasses. CRC Press, Physical properties and data

    Google Scholar 

  2. 2.

    Deb B, Bhattacharya S, Gosh A (2011) EPL 96(3):37005

    Article  Google Scholar 

  3. 3.

    Bachvarova-Nedelcheva A, Iordanova R, Kostov KL, Ganev V (2012) Opt Mater 34:1781–1787

    Article  Google Scholar 

  4. 4.

    Bachvarova-Nedelcheva A, Iordanova R, Kostov KL, Ganev V (2014) Opt Mater 36(8):1319–1328

    Article  Google Scholar 

  5. 5.

    Bingham PA, Connelly AJ, Cassingham NJ, Hyatt NC (2011) J Non-Cryst Solids 357:2726–2734

    Article  Google Scholar 

  6. 6.

    Tan TTY, Yip CK, Beydoun D, Amal R (2003) Chem Eng J 95:179–186

    Article  Google Scholar 

  7. 7.

    Zhang P, Sparks DL (1990) Environ Sci Technol 24:1848–1856

    Article  Google Scholar 

  8. 8.

    Sanuki S, Kojima T, Arai K, Nagaoka S, Majima H (1999) Metall Mater Trans B 30:15–20

    Article  Google Scholar 

  9. 9.

    Brinker C, Scherer G (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press Inc, San Diego, CA

    Google Scholar 

  10. 10.

    Sakka S (2004) Handbook of sol-gel science and technology: processing, characterization and applications, vols I, II, III. Kluwer, Amsterdam

    Google Scholar 

  11. 11.

    Pierre A, Duboudin F, Tanguy B, Portier J (1994) J Non-Cryst Solids 147&148:569–573

    Google Scholar 

  12. 12.

    Weng L, Hodgson S, Bao X, Sagoe-Crentsil K (2004) Mater Sci Eng, B 107:89–93

    Article  Google Scholar 

  13. 13.

    Weng L, Hodgson S (2001) J Mater Sci 36:4955–4959

    Article  Google Scholar 

  14. 14.

    Hodgson S, Weng L (2002) J Mater Sci 37:3059–3066

    Article  Google Scholar 

  15. 15.

    Weng L, Hodgson S (2001) Mater Sci Eng, B 87:77–82

    Article  Google Scholar 

  16. 16.

    Coste S, Lecomte A, Thomas P, Merle-Mejean T, Champarnaud-Mesjard JC (2007) J Sol-Gel Sci Technol 41:79–86

    Article  Google Scholar 

  17. 17.

    Wei H-Y, Huang W-H, Feng Z-B, Li D-W (2009) Mater Sci Eng, B 164:51–59

    Article  Google Scholar 

  18. 18.

    Hodgson S, Weng L (2006) J Non-Cryst Solids 297:18–25

    Google Scholar 

  19. 19.

    Hodgson S, Weng L (2002) J Mater Sci: Mater Electron 17:723–733

    Google Scholar 

  20. 20.

    Dimitriev Y, Dimitrov V, Arnaudov M (1983) J Mater Sci 18:1353–1358

    Article  Google Scholar 

  21. 21.

    Dimitriev Y, Dimitrov V, Gatev E, Kashchieva E, Petkov H (1987) J Non-Cryst Solids 95/96:937–944

    Article  Google Scholar 

  22. 22.

    Dimitriev Y, Bankov A, Ivanova Y, Dimitrov V, Petrakiev A, Tomova M (1980) Build Mater Silic Ind 1:22–26 (in Bulgarian)

    Google Scholar 

  23. 23.

    Lakov L, Dimitriev Y (1981) Phys Chem Glasses 22(3):69–71

    Google Scholar 

  24. 24.

    Lakov L, Dimitriev Y (1982) Phys Chem Glass 23:76–78

    Google Scholar 

  25. 25.

    Bachvarova-Nedelcheva A, Iordanova R, Dimitriev Y, Kashchieva E (2007) J Mater Sci 42(7):3378–3382

    Article  Google Scholar 

  26. 26.

    Dimitriev Y, Bachvarova-Nedelcheva A, Iordanova R (2008) Mater Res Bull 43:1905–1910

    Article  Google Scholar 

  27. 27.

    Udovic M, Thomas P, Mirgorodsky A, Durand O, Soulis M, Masson O, Merle-Méjean T, Champarnaud-Mesjard JC (2006) J Solid State Chem 179:3252–3259

    Article  Google Scholar 

  28. 28.

    Barney ER, Hannon AC, Holland D, Umesaki N, Tatsumisago M, Orman RG, Feller S (2013) J Phys Chem Lett 4:2312–2316

    Article  Google Scholar 

  29. 29.

    Sabadel J-C, Armand P, Lippens PE, Herreillat DC, Philippot E (1999) J Non-Cryst Solids 244:143–150

    Article  Google Scholar 

  30. 30.

    Hayakawa T, Koyama H, Nogami M, Thomas Ph (2012) J Univ Chem Techn Metall 47(4):381–386

    Google Scholar 

  31. 31.

    Zhang S-Y, Chen X, Tian Y, Jin BK, Yang JX (2007) J Crystal Growth 304:42–46

    Article  Google Scholar 

  32. 32.

    Stengl V, Bakardjieva S, Bludska J (2011) J Mater Sci 46:3523–3536

    Article  Google Scholar 

  33. 33.

    Nguyen V, Amal R, Beydoun D (2006) J Photochem Photobiol A Chem 179:57–65

    Article  Google Scholar 

  34. 34.

    Lecomte A, Bamiere F, Coste S, Thomas P, Champarnaud-Mesjard JC (2007) J Eur Ceram Soc 27:1151–1158

    Article  Google Scholar 

  35. 35.

    Hodgson S, Weng L (2000) J Non-Cryst Solids 276:195–200

    Article  Google Scholar 

  36. 36.

    Dharma J, Pisal A (2009) Simple method of measuring the band gap energy value of TiO2 in the powder form using a UV/Vis/NIR spectrometer. Application note. PerkinElmer, Shelton, CT

  37. 37.

    Okáč A (1966) Analytická chemie kvalitativni, Ved. Redactor Čuta F, Academia Nakladatelstvi, Českoslov. Acad. VED, Praha (in Czheck)

  38. 38.

    Weng L, Hodgson S (2002) Opt Mater 19:313–317

    Article  Google Scholar 

  39. 39.

    Hodgson S, Weng L (2000) J Sol-Gel Sci Technol 18:145–158

    Article  Google Scholar 

  40. 40.

    Saylikan F, Asilturk M, Saylikan H, Onal Y, Akarsu M, Aprac E (2005) Turk J Chem 29:697–706

    Google Scholar 

  41. 41.

    Madarasz J, Braileanu A, Crisan M, Pokol G (2009) J Anal Appl Pyrol 85:549–556

    Article  Google Scholar 

  42. 42.

    Doeuff S, Henry M, Sanchez C, Livage J (1987) J Non-Cryst Solids 89:206–216

    Article  Google Scholar 

  43. 43.

    Barboux-Doeuff S, Sanchez C (1994) Mater Res Bull 29:1–13

    Article  Google Scholar 

  44. 44.

    Zubkova O, Shabadash A (1971) Zh Prikl Spektr 14(5):874–878

    Google Scholar 

  45. 45.

    Kato K, Tsuge A, Niihara K (1996) J Am Ceram Soc 79(6):1483–1488

    Article  Google Scholar 

  46. 46.

    Shashikala MN, Elizabeth S, Cary B, Bhat HL (1987) Curr Sci 56:861–863

    Google Scholar 

  47. 47.

    Ktari L, Dammak M, Mhiri T, Kolsi AW (2002) Phys Chem News 8:01–08

    Google Scholar 

  48. 48.

    Nakamoto K (1978) IR and Raman spectra of inorganic coordination compounds, 3rd edn. Wiley, London, p 230

    Google Scholar 

  49. 49.

    Arnaudov M, Dimitrov V, Dimitriev Y (1982) Mater Res Bull 17:1121–1129

    Article  Google Scholar 

  50. 50.

    Iordanova R, Gegova R, Bachvarova-Nedelcheva A, Dimitriev Y (2015) Phys Chem Glass 56(4):128–138

    Google Scholar 

  51. 51.

    Falk M, Giguere PA (1958) Can J Chem 36:1680–1685

    Article  Google Scholar 

  52. 52.

    Gospodinov G, Sukova L, Petrov K (1988) J Inorg Chem 33:1970–1974 (in Russian)

    Google Scholar 

  53. 53.

    Bachvarova A, Dimitriev Y, Iordanova R (2005) J Non-Cryst Solids 351:998–1002

    Article  Google Scholar 

  54. 54.

    Uzunova-Bujnova M, Dimitrov D, Radev D, Bojinova A, Todorovsky D (2008) Mater Chem Phys 110:291–298

    Article  Google Scholar 

  55. 55.

    Beattie IR, Gilson T (1968) Proc R Soc A 307:407–429

    Article  Google Scholar 

  56. 56.

    Henry M, Leavage J, Sanchez C (1988) Progr Sol State Chem 18:259–341

    Article  Google Scholar 

  57. 57.

    Velasco MJ, Rubio F, Rubio J, Oteo J (1999) Spectr Lett 32(2):289–304

    Article  Google Scholar 

  58. 58.

    Yamaguchi O, Tomihisa D, Shimizu K (1988) J Chem Soc, Dalton Trans 564:115–120

    Google Scholar 

  59. 59.

    Gao X, Wachs IE (1999) Cat Today 51:233–254

    Article  Google Scholar 

  60. 60.

    Barlier V, Bounor-Legare V, Boiteux G, Davenas J (2008) Appl Surf Sci 254:5408–5412

    Article  Google Scholar 

  61. 61.

    Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madras G (2004) Langmuir 20:2900–2907

    Article  Google Scholar 

  62. 62.

    Ngyen Vi VNH, Beydoun D, Amal R (2005) J Photochem Photobiol A Chem 171:113–120

    Article  Google Scholar 

  63. 63.

    Meng ZD, Zhu L, Ullah K, Ye S, Oh W-Ch (2014) Mater Res Bull 56:45–53

    Article  Google Scholar 

  64. 64.

    Tripathi K, Husain M et al (2009) Chalcogenide Lett 6(9):517–522

    Google Scholar 

  65. 65.

    Wang C, Xu B-Q, Wang X, Zhao J (2005) J Solid State Chem 178:3500–3506

    Article  Google Scholar 

  66. 66.

    Ross-Medgaarden EI, Wachs IE (2007) J Phys Chem C 111:15089–15099

    Article  Google Scholar 

  67. 67.

    Lu T, Zhang R, Hu Ch, Chen F, Duo Sh, Hu Q (2013) Phys Chem Chem Phys 15:12963–12970

    Article  Google Scholar 

  68. 68.

    Ohtsu N, Masahashi N, Mizukoshi Y, Wagatsuma K (2009) Langmuir 25(19):11586–11591

    Article  Google Scholar 

  69. 69.

    Zhong J, Chen F, Zhang J (2010) J Phys Chem C114:933–939

    Google Scholar 

  70. 70.

    Dai G, Liang S, Liu H, Zhong Z (2013) J Mol Catal A: Chem 368–369:38–42

    Article  Google Scholar 

  71. 71.

    Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Appl Catal B Environ 69:138–144

    Article  Google Scholar 

  72. 72.

    Stankovich S, Dikin D, Piner R, Kohlhaas K, Kleinhammes A, Jia Y, Wu Y, Ngyen ST, Ruoff R (2007) Carbon 45(7):1558–1565

    Article  Google Scholar 

  73. 73.

    Sachse A, Hulea V, Kostov KL, Belamie E, Alonso B (2015) Catal Sci Technol 5:415–427

    Article  Google Scholar 

  74. 74.

    Shenasa M, Sainkar S, Lichtman D (1986) J Electr Spectr Rel Phenom 40:329–337

    Article  Google Scholar 

  75. 75.

    Remy H (1963) Course inorganic chemistry, vol I. Moskva (in Russian)

  76. 76.

    Häggblad R, Wagner JB, Deniau B, Millet JM, Holmberg J, Grasselli RK, Hansen S, Andersson A (2008) Top Catal 50:52–65

    Article  Google Scholar 

  77. 77.

    Chang H, Chiang M, Tsai T, Chen T, Whang W, Cheen C (2014) Nanoscale. doi:10.1039/c4nr02765e

    Google Scholar 

  78. 78.

    Puccetti G, Leblanc RM (1996) J Phys Chem 100:1731–1737

    Article  Google Scholar 

  79. 79.

    Kallala M, Sanchez C, Cabane B (1993) Phys Rev E 48(5):3692–3704

    Article  Google Scholar 

  80. 80.

    Sanchez C, Livage J, Henry M, Babonneau F (1988) J Non-Cryst Solids 100:65–76

    Article  Google Scholar 

  81. 81.

    Khanna M, Wongnawa S (2008) Mater Chem Phys 110:166–175

    Article  Google Scholar 

  82. 82.

    Zhang Z, Maggard P (2007) J Photochem Photobiol A Chem 186:8–13

    Article  Google Scholar 

  83. 83.

    Alam MJ, Cameron DC (2002) J Sol-Gel Sci Technol 25:137–145

    Article  Google Scholar 

  84. 84.

    Svadlak D, Shanelova J, Malek J, Perez-Maqueda L, Criado J, Mitsuhashi T (2004) Thermochim Acta 414:137–143

    Article  Google Scholar 

  85. 85.

    Hsieh Ch-W, Chiang AST, Lee CC, Yang Sh-J (1992) J Non-Cryst Solids 144:53–62

    Article  Google Scholar 

  86. 86.

    Li H, Shao G, Chen Z, Song B, Han G (2010) J Am Ceram Soc 93(2):445–449

    Article  Google Scholar 

  87. 87.

    Shalaby A, Dimitriev Y, Iordanova R, Bachvarova-Nedelcheva A, Iliev T (2011) J Univ Chem Techn Metall 46(2):137–142

    Google Scholar 

  88. 88.

    Shalaby A, Bachvarova-Nedelcheva A, Iordanova R, Dimitriev Y (2013) J Chem Technol Metall 48(6):585–590

    Google Scholar 

  89. 89.

    Reznickij LA, Filipova SE (1997) Vestnik Moskovskovo Univ Ser 2 Chem 38(2):132–133 (in Russian)

    Google Scholar 

  90. 90.

    Dimitriev Y, Dimitrov V, Gatev E, Kashchieva E, Petkov H (1987) J Non-Cryst Solids 95–96:937–944

    Article  Google Scholar 

  91. 91.

    Hanaor DAH, Sorrell ChC (2011) J Mater Sci 46:855–874

    Article  Google Scholar 

  92. 92.

    Zhang H, Banfield J (2000) J Phys Chem B 104:3481–3487

    Article  Google Scholar 

  93. 93.

    Zhang H, Banfield J (1998) J Mater Chem 8(9):2073–2076

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the financial support of The Ministry of Education and Science of Bulgaria, Operational Program “Human Resources Development,” co-financed by the European Social Fund of the European Union, contracts: BGO51PO001-3.3.06-0050.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Bachvarova-Nedelcheva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iordanova, R., Bachvarova-Nedelcheva, A., Gegova, R. et al. Sol–gel synthesis of composite powders in the TiO2–TeO2–SeO2 system. J Sol-Gel Sci Technol 79, 12–28 (2016). https://doi.org/10.1007/s10971-016-4029-9

Download citation

Keywords

  • Sol-gel
  • Te(VI) acid
  • Composite materials
  • IR
  • UV–Vis spectra