Skip to main content
Log in

Structural and magnetic characterization of 100-kGy Co60 γ-ray-irradiated ZnFe2O4 NPs by XRD, W–H plot and ESR

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline spinel ferrite was prepared by sol–gel auto-combustion technique and sintered at 600 °C for 12 h. Single-phase cubic spinel structure of zinc ferrite was confirmed through X-ray diffractometry. Several structural and magnetic properties of ZnFe2O4 NPs were studied after Co60 γ-irradiation with total gamma dose of 50 and 100 kGy. An average crystallite size was determined from the full width at half maximum of strongest reflection (311) by using Scherrer’s approximation. Williamson–Hall plot (graph against βcosθ and 4sinθ) was used to re-evaluate the measured crystallite size and to estimate the strain distribution in terms of η%. Lattice constant (α) initially increased slightly to 8.441 Å with γ-50 kGy and then decreased dramatically with total dose of γ-100 kGy. Frustrated behaviour in peak shift to lower and higher 2θ side can be seen in XRD after γ-irradiation to ZnFe2O4 NPs. FT-IR spectra confirmed the formation of ferrite phase and redistribution of cations in (A) and [B] sites of ZnFe2O4 spinel structure. In the first derivative peak of ESR spectroscopy, gyroscopic spitting factor (g-value) and linewidth (∆HPP) were used to deliberate the γ-radiation damage in investigated ferrimagnetic nanoparticles. Experimental results revealed that the saturation magnetization (M s), coercivity (H c) and magneton number (n B) of ZnFe2O4 NPs were found to be increased after gamma irradiation dose of γ-100 kGy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Okasha N (2010) Enhancement of magnetization of Mg–Mn nanoferrite by—irradiation. J Alloys Compd 490:307–310

    Article  Google Scholar 

  2. Beteshobabrud R, Nabardi F (2009) The stability studies of penicillin and ampicillin following γ-irradiation in the solid state. Iran J Pharm Res 8(3):153–157

    Google Scholar 

  3. Loaharanu P, Ahmed M (1991) Advantages and disadvantages of the use of irradiation for food preservation. J Agric Environ Ethics 4(1):14–30

    Article  Google Scholar 

  4. Asha P, Vadivu KS, Rajeswari N (2011) Effect of gamma radiation on flexible food packaging material. Int J Adv Eng Technol 4:151–156. E-ISSN 0976-3945 2

  5. Peykarestan B, Seify M, Fadaei MS and Abdoli M (2012) Ultraviolet irradiation effects on seed germination and growth, protein content, peroxidase and protease activity in purslane and thyme. Int J Agric Res Rev 1:12–19. http://ecisi.com/wp-content/uploads/2012/01/12-191. ISSN: 2228-7973 2

  6. Desrosiers MF (2004) Irradiation applications for homeland security. Radiat Phys Chem 71:479–482

    Article  Google Scholar 

  7. Dolia SN, Sharma PK, Dhawan MS, Kumar S, Prasad AS, Samariya A, Pareek SP, Singhal RK, Asokan K, Xing YT, Alzamora M, Saitovitach E (2012) Swift heavy ion irradiation induced modifications in magnetic and dielectric properties of Mn-Ca ferrite. Appl Surf Sci 258:4207–4211

    Article  Google Scholar 

  8. Yeary LW, Ji-WonMoon RawnCJ, Love LJ, Rondinone AJ, Thompson JR, Chakoumakos BC, Phelps TJ (2011) Magnetic properties of bio-synthesized zinc ferrite nanoparticles. J Magn Magn Mater 323(23):3043–3048

    Article  Google Scholar 

  9. Ahmed MA, Bishay ST, Radwan FA (2002) γ irradiation effect on the polarization and resistance of Li–Co–Yb-ferrite. J Phys Chem Solids 63(2):279–286

    Article  Google Scholar 

  10. Ito Y, Yasuda K, Ishigami R, Hatori S, Okada O, Ohashi K, Tanaka S (2001) Magnetic flux loss in rare-earth magnets irradiated with 200 MeV protons. Nucl Instrum Methods B 183:322–328

    Google Scholar 

  11. Mane ML, Shirsath SE, Dhage VN, Jadhav KM (2011) Modifications in structural, cation distribution and magnetic properties of 60Co gamma irradiated Li-ferrite. Nucl Instru Meth Phys Res B 269:2026–2031

    Article  Google Scholar 

  12. Mazen SA, Mansour SF, Zaki HM (2003) Some physical and magnetic properties of Mg-Zn ferrite. Cryst Res Technol 38(6):471–478

    Article  Google Scholar 

  13. Hemeda M, El-Saadawy M (2003) Effect of gamma irradiation on the structural properties and diffusion coefficient in Co–Zn ferrite. J Magn Magn Mater 256:1:3:63–68

  14. Naseri MG, Saion EB, Hashima M, Shaari AH, Ahangard HA (2011) Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun 151:1031–1035

    Article  Google Scholar 

  15. Chu X, Liu X (1999) Meng Sens Actuators B55:19

    Article  Google Scholar 

  16. Ahmed M, Alonso L, Palascios JM, Cilleruelo C, Abanades JC (2000) Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization. Solid State Ionics 138:51–62

    Article  Google Scholar 

  17. Zhuiykov S, Ono T, Yamazoe N, Muira N (2002) High-temperature NOX sensors using zirconia and zinc-family oxide sensing electrode. Solid State Ionics 152:801–807

    Article  Google Scholar 

  18. Kinnari P, Upadhyay RV, Mehta RV (2002) Magnetic properties of Fe–Zn ferrite substituted ferrofluids. J Magn Magn Mater 252:35–38

    Article  Google Scholar 

  19. Kumar ER, Jayaprakash R, Devi GS, Reddy PSP (2014) Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles. J Magn Magn Mater 355:87–92

    Article  Google Scholar 

  20. Liu YL, Liu ZM, Yang Y, Yang HF, Shan GL, Yu RQ (2005) Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sens Actuators B Chem 107:600–604

    Article  Google Scholar 

  21. Gatelytė A, Jasaitis D, Beganskienė A, Kareiva A (2011) Sol–gel synthesis and characterization of selected transition metal nano-ferrites. Mater Sci (Medžiagotyra) 17 3:302–307. doi:10.5755/j01.ms.17.3.598. ISSN 1392–1320

  22. Yue Z, Guo W, Zhou Ji, Gui Z, Li Longtu (2004) Synthesis of nanocrystilline ferrites by sol–gel combustion process: the influence of pH value of solution. J Magn Magn Mater 270:216–223

    Article  Google Scholar 

  23. Raut AV, Kurmude DV, Shengule DR, Jadhav KM (2015) Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles. Mater Res Bull 63:123–128

    Article  Google Scholar 

  24. Ahmed MA, Ateia E, Salem FM (2007) The effect of Ti4+ ions and gamma radiation on the structure and electrical properties of Mg ferrite. J Mater Sci 42(10):3651

    Article  Google Scholar 

  25. Girgis E, Wahsh MM, Othman AG, Bandhu L, Rao K (2011) Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles. Nanoscale Res Lett 6(1):460

    Article  Google Scholar 

  26. Yousefi M, Alimard P (2013) Synthesis of M-Nd doped Fe3O4 nanoparticles (M = Co, Ce, Cr, Ni) with tunable magnetic properties. Bull Chem Soc Ethiop 27(1):49–56. doi:10.4314/bcse.v27i1.5

    Google Scholar 

  27. Mote VD, Purushotham Y, Dole BN (2012) Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:6. http://www.jtaphys.com/content/2251-7235/6/1/6

  28. Varma MC, Choudary GSVRK, Mahesh Kumar A, Rao KH (2014) Estimating the cation distributions in Ni0.65−Zn0.35Co x Fe2O4 ferrites using X-ray, FT-IR, and magnetization measurements. Phys Res Int 579745:1–9. doi:10.1155/2014/579745

    Article  Google Scholar 

  29. Raghasudha M, Ravinder D, Veerasomaiah P (2013) Characterization of chromium substituted cobalt nano ferrites synthesized by citrate-gel auto combustion method. Adv Mater Phys Chem 3:89–96

    Article  Google Scholar 

  30. Gul IH, Maqsood A (2008) Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J Alloys Compd 465:1:2:227–231

  31. Polesi LF, Sarmento SBS, de Moraes Jaqueline, Franco CML, Canniatti-Brazaca SG (2016) Physicochemical and structural characteristics of rice starch modified by irradiation. Food Chem 191:59–66

    Article  Google Scholar 

  32. Wang GH, Sang H, Gg Pang, Chen L, Dou L, De Shen, Mk Teng, Sj Li, Km Wang, Wang Yh, Jt Liu, Jin T, Si Hang (1988) Positron annihilation, x-ray and esr studies of iron ion implanted crystals of potassium bromide and quartz. Nucl Instru Methods Phys Res B33:760–764

    Google Scholar 

  33. Kurian M, Kunjachan C (2014) Investigation of size dependency on lattice strain of nanoceria particles synthesised by wet chemical methods. Int Nano Lett 4:73–80. doi:10.1007/s40089-014-0122-7

    Article  Google Scholar 

  34. Maruyama T, Harayama M (2004) Relationship between dimensional changes and the thermal conductivity of neutron-irradiated SiC. J Nucl Mater 329–333:1022–1028

    Article  Google Scholar 

  35. Sutka A, Parna R, Mezinskis G, Kisand V (2014) Effects of Co ion addition and annealing conditions on nickel ferrite gas response. Sens Actuators B 192:173–180

    Article  Google Scholar 

  36. Puche RS, Fernandez MJT, Gutierrez VB, Gomez R, Marquina V (2008) Ferrites nanoparticles MFe2O4 (M = Ni and Zn): hydrothermal synthesis and magnetic properties. Boletín de la Sociedad Española de Cerámica y Vidrio 47(3):133–137

    Article  Google Scholar 

  37. Rehani BR, Joshi PB, Lad KN, Pratap Arun (2006) Crystallite size estimation of elemental and composite silver nano-powders using XRD principles. Indian J Pure Appl Phys 44:157–161

    Google Scholar 

  38. Kumar L, Kumar P, Narayan A, Kar M (2013) Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int Nano Lett 3:8:1–12. http://www.inl-journal.com/content/3/1/8

  39. Waje SB, Hashim Mansor, Yusoff WDW, Abbas Zulkifly (2010) X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering. Appl Surf Sci 256(10):3122–3127

    Article  Google Scholar 

  40. Hemeda DM, Hemeda OM (2008) Electrical, structural, magnetic and transport properties of Zn2 Ba Fe16 O27 Doped With Cu2+. Am J Appl Sci 4:289–295. ISSN 1546-9239 5

  41. Nayak PK (2008) Synthesis and characterization of zinc ferrite by xrd, vsm and electron spin resonance techniques. Mater Chem Phys 112:24–26

    Article  Google Scholar 

  42. Topkaya R, Baykal A, Demir A (2013) Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J Nanopart Res 15:1359

    Article  Google Scholar 

  43. Joshi S, Kumar M, Chhoker S, Srivastava G, Jewariya M, Singh VN (2014) Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J Mol Struct 1076:55–62

    Article  Google Scholar 

  44. Cheruku Rajesh, Govindaraj G, Vijayan Lakshmi (2014) Super-linear frequency dependence of ac conductivity in nanocrystalline lithium ferrite. Mater Chem Phys 146:389–398

    Article  Google Scholar 

  45. Praveena K, Sadhana K, Murthy SR (2011) Structural and magnetic properties of NiCuZn ferrite/SiO2 nanocomposites. J Magn Magn Mater 323:2122–2128

    Article  Google Scholar 

  46. Kavas Hüseyin, Kasapŏglu Nermin, Baykal Abdülhadi, Köseŏglu Yüksel (2009) Characterization of NiFe2O4 nanoparticles synthesized by various methods. Chem Pap 63(4):450–455. doi:10.2478/s11696-009-0034-6

    Article  Google Scholar 

  47. Peddis D, Cannas C, Musinu A, Piccaluga G (2009) Magnetism in nanoparticles: beyond the effect of particle size. Chem A Eur J 15(32):7822–7829

    Article  Google Scholar 

  48. Tehrani FS, Daadmehr V, Rezakhani AT, Akbarnejad RH, Gholipour S (2012) Structural, magnetic, and optical properties of zinc-and copper-substituted nickel ferrite nanocrystals. J Supercond Novel Magn 25(7):2443–2455

    Article  Google Scholar 

  49. Deraz NM, Alarifi A (2012) Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system. J Anal Appl Pyrol 94:41–47

    Article  Google Scholar 

  50. Li Wang, Fa-Shen Li (2008) Structural and magnetic properties of Co1-xZnxFe2O4 nanoparticles. Chin Phys B 17(5):1858–1862

    Article  Google Scholar 

  51. Murthy NNS, Natera MG, Youssef SI, Begum RJ (1969) Yafet--Kittel angles in Zinc--Nickel ferrites. Phys Rev B 181:969

    Article  Google Scholar 

  52. Coey JMD (1996) Rare earth permanent magnetism, 1st edition. Wiley, New York, p 220

  53. Karim A, Shisath SE, Shukla SJ, Jadhav KM (2010) Gamma irradiation induced damage creation on the cation distribution, structural and magnetic properties in Ni–Zn ferrite. Nucl Instr Meth Phys Res B 268:2706–2711

    Article  Google Scholar 

  54. Waje SB, Hashim M, Yusoff WDW, Abbas Z (2009) Room temperature measurement of physical and magnetic characteristic of Co0.4Ni0.3Zn0.3Fe2O4 polycrystalline material prepared using mechanically alloyed nanoparticles. Aust J Basic Appl Sci 3(3):2716–2723

    Google Scholar 

  55. Singhal S, Namgyal T, Bansal S, Chandra K (2010) Effect of Zn substitution of the magnetic properties of cobalt ferrite nanoparticles prepared via sol-gel route. J Electromagn Anal Appl 2:376–381

    Google Scholar 

Download references

Acknowledgments

One of the authors (Anil V. Raut) is thankful to Dr. Pujari and Dr. Acharya (Bhabha Atomic Research Centre) for providing gamma irradiation facility for the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil V. Raut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, A.V., Jadhav, S.A., Shengule, D.R. et al. Structural and magnetic characterization of 100-kGy Co60 γ-ray-irradiated ZnFe2O4 NPs by XRD, W–H plot and ESR. J Sol-Gel Sci Technol 79, 1–11 (2016). https://doi.org/10.1007/s10971-016-4019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4019-y

Keywords

Navigation