Journal of Sol-Gel Science and Technology

, Volume 78, Issue 3, pp 550–558 | Cite as

Optimization of cerium doping of TiO2 for photocatalytic reduction of CO2 and photocatalytic decomposition of N2O

  • Kamila KočíEmail author
  • Lenka Matějová
  • Nela Ambrožová
  • Marcel Šihor
  • Ivana Troppová
  • Libor Čapek
  • Andrzej Kotarba
  • Piotr Kustrowski
  • Alice Hospodková
  • Lucie Obalová
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications


The cerium-doped TiO2 photocatalysts (0–0.8 mol% Ce) were prepared by using a sol–gel method. Textural, structural, optical and electronic properties of Ce/TiO2 photocatalysts were characterized in detail by using nitrogen physisorption, powder X-ray diffraction, diffuse reflectance UV–Vis spectroscopy and contact potential difference measurements. It was proved that increasing amount of cerium ions in TiO2 (1) decreased the anatase crystallite size, which corresponded to the increase in specific surface area of the photocatalysts, and (2) decreased the absorption edge (shifting the spectral response toward the visible light region). The prepared photocatalysts were tested for CO2 photocatalytic reduction in a stirred batch annular reactor, and methane was a main product. The photocatalytic decomposition of nitrous oxide was carried out in batch reactor with circulation, and only oxygen and nitrogen were detected as reaction products. It was found out that the energies of electrons and holes played the key role in both photocatalytic reactions and can be markedly affected by doping of TiO2 by cerium.

Graphical Abstract


Photocatalysis Greenhouse gases Titania Cerium N2CO2 



This work was supported by the Grant Agency of the Czech Republic (projects reg. Nos. 14-35327J and 14-23274S). Authors also thank to the support of the project SP2015/125 and projects in National Feasibility Program I LO1404 “TUCENET” and LO1208 “TEWEP” from Ministry of Education, Youth and Sports of the Czech Republic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    de Richter R, Caillol S (2011) J Photochem Photobiol C Photochem Rev 12:1–19CrossRefGoogle Scholar
  2. 2.
    de Richter RK, Ming T, Caillol S (2013) Renew Sustain Energy Rev 19:82–106CrossRefGoogle Scholar
  3. 3.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed Engl 52:7372–7408CrossRefGoogle Scholar
  4. 4.
    Liu G, Hoivik N, Wang K, Jakobsen H (2012) Sol Energy Mater Sol Cells 105:53–68CrossRefGoogle Scholar
  5. 5.
    Koci K, Obalova L, Lacny Z (2008) Chem Pap 62:1–9CrossRefGoogle Scholar
  6. 6.
    Kočí K, Krejčíková S, Šolcová O, Obalová L (2012) Catal Today 191:134–137CrossRefGoogle Scholar
  7. 7.
    Sano T, Negishi N, Mas D, Takeuchi K (2000) J Catal 194:71–79CrossRefGoogle Scholar
  8. 8.
    Matějová L, Šihor M, Brunátová T, Ambrožová T, Reli M, Čapek L, Obalová L, Kočí K (2015) Res Chem. IntermedGoogle Scholar
  9. 9.
    Manzanares M, Fàbrega C, Oriol Ossó L, Vega LF, Andreu T, Morante JR (2014) Appl Catal B Environ 150-151:57–62CrossRefGoogle Scholar
  10. 10.
    Sasirekha N, Basha S, Shanthi K (2006) Appl Catal B 62:169–180CrossRefGoogle Scholar
  11. 11.
    Tseng IH, Wu JCS, Chou H-Y (2004) J Catal 221:432–440CrossRefGoogle Scholar
  12. 12.
    Zhang Q-H, Han W-D, Hong Y-J, Yu J-G (2009) Catal Today 148:335–340CrossRefGoogle Scholar
  13. 13.
    Matějová L, Kočí K, Reli M, Čapek L, Matějka V, Šolcová O, Obalová L (2013) Appl Surf Sci 285:688–696CrossRefGoogle Scholar
  14. 14.
    Koci K, Matejova L, Reli M, Capek L, Matejka V, Lacny Z, Kustrowski P, Obalova L (2014) Catal Today 230:20–26CrossRefGoogle Scholar
  15. 15.
    Matejova L, Koci K, Reli M, Capek L, Hospodkova A, Peikertova P, Matej Z, Obalova L, Wach A, Kustrowski P, Kotarba A (2014) Appl Catal B Environ 152:172–183CrossRefGoogle Scholar
  16. 16.
    Wang YG, Li B, Zhang CL, Cui LF, Kang SF, Li X, Zhou LH (2013) Appl Catal B Environ 130:277–284CrossRefGoogle Scholar
  17. 17.
    Jiao JQ, Wei YC, Zhao Z, Liu J, Li JM, Duan AJ, Jiang GY (2014) Ind Eng Chem Res 53:17345–17354CrossRefGoogle Scholar
  18. 18.
    Reli M, Ambrozova N, Sihor M, Matejova L, Capek L, Obalova L, Matej Z, Kotarba A, Koci K (2015) Appl Catal B Environ 178:108–116CrossRefGoogle Scholar
  19. 19.
    Matejova L, Cajthaml T, Matej Z, Benada O, Kluson P, Solcova O (2010) J Supercrit Fluid 52:215–221CrossRefGoogle Scholar
  20. 20.
    Matejova L, Vales V, Fajgar R, Matej Z, Holy V, Solcova O (2013) J Solid State Chem 198:485–495CrossRefGoogle Scholar
  21. 21.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  22. 22.
    Scardi P, Leoni M (2002) Acta Crystallogr A: Found Crystallogr 58:190–200CrossRefGoogle Scholar
  23. 23.
    Matěj Z, Kužel R, Nichtová L (2010) Powder Diffr 25:125–131CrossRefGoogle Scholar
  24. 24.
    Matej Z, Matejova L, Kuzel R (2013) Powder Diffr 28:S161–S183CrossRefGoogle Scholar
  25. 25.
    MdlM Ballari R, Brandi O, Alfano AC (2008) Chem Eng J 136:50–65CrossRefGoogle Scholar
  26. 26.
    Koci K, Obalova L, Placha D, Lacny Z (2008) Collect Czech Chem Commun 73:1192–1204CrossRefGoogle Scholar
  27. 27.
    Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J, Šolcová O (2009) Appl Catal B Environ 89:494–502CrossRefGoogle Scholar
  28. 28.
    Obalová L, Maniak G, Karásková K, Kovanda F, Kotarba A (2011) Catal Commun 12:1055–1058CrossRefGoogle Scholar
  29. 29.
    Maniak G, Stelmachowski P, Stanek JJ, Kotarba A, Sojka Z (2011) Catal Commun 15:127–131CrossRefGoogle Scholar
  30. 30.
    Legutko P, Stelmachowski P, Trębala M, Sojka Z, Kotarba A (2013) Top Catal 56:489–492CrossRefGoogle Scholar
  31. 31.
    Magesh G, Viswanathan B, Viswanath RP, Varadarajan TK (2009) Indian J Chem A Inorg Phys Theor Anal Chem 48:480–488Google Scholar
  32. 32.
    Xu YH, Chen HR, Zeng ZX, Lei B (2006) Appl Surf Sci 252:8565–8570CrossRefGoogle Scholar
  33. 33.
    Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH (2005) Appl Catal A 285:181–189CrossRefGoogle Scholar
  34. 34.
    Xie Y, Yuan C, Li X (2005) Mater Sci Eng B Solid State Adv Technol 117:325–333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kamila Kočí
    • 1
    • 2
    • 3
    Email author
  • Lenka Matějová
    • 1
  • Nela Ambrožová
    • 1
  • Marcel Šihor
    • 1
  • Ivana Troppová
    • 1
  • Libor Čapek
    • 4
  • Andrzej Kotarba
    • 5
  • Piotr Kustrowski
    • 5
  • Alice Hospodková
    • 6
  • Lucie Obalová
    • 1
    • 2
  1. 1.Institute of Environmental TechnologyVŠB - Technical University of OstravaOstrava – PorubaCzech Republic
  2. 2.Faculty of Metallurgy and Material EngineeringVŠB - Technical University of OstravaOstrava – PorubaCzech Republic
  3. 3.Energy Units for Utilization of Non Traditional Energy SourcesVŠB - Technical University of OstravaOstrava – PorubaCzech Republic
  4. 4.Department of Physical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  5. 5.Jagiellonian UniversityKrakówPoland
  6. 6.Institute of Physics of the ASCR, v.v.iPrague 8Czech Republic

Personalised recommendations