Skip to main content
Log in

Optimization of cerium doping of TiO2 for photocatalytic reduction of CO2 and photocatalytic decomposition of N2O

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The cerium-doped TiO2 photocatalysts (0–0.8 mol% Ce) were prepared by using a sol–gel method. Textural, structural, optical and electronic properties of Ce/TiO2 photocatalysts were characterized in detail by using nitrogen physisorption, powder X-ray diffraction, diffuse reflectance UV–Vis spectroscopy and contact potential difference measurements. It was proved that increasing amount of cerium ions in TiO2 (1) decreased the anatase crystallite size, which corresponded to the increase in specific surface area of the photocatalysts, and (2) decreased the absorption edge (shifting the spectral response toward the visible light region). The prepared photocatalysts were tested for CO2 photocatalytic reduction in a stirred batch annular reactor, and methane was a main product. The photocatalytic decomposition of nitrous oxide was carried out in batch reactor with circulation, and only oxygen and nitrogen were detected as reaction products. It was found out that the energies of electrons and holes played the key role in both photocatalytic reactions and can be markedly affected by doping of TiO2 by cerium.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Richter R, Caillol S (2011) J Photochem Photobiol C Photochem Rev 12:1–19

    Article  Google Scholar 

  2. de Richter RK, Ming T, Caillol S (2013) Renew Sustain Energy Rev 19:82–106

    Article  Google Scholar 

  3. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed Engl 52:7372–7408

    Article  Google Scholar 

  4. Liu G, Hoivik N, Wang K, Jakobsen H (2012) Sol Energy Mater Sol Cells 105:53–68

    Article  Google Scholar 

  5. Koci K, Obalova L, Lacny Z (2008) Chem Pap 62:1–9

    Article  Google Scholar 

  6. Kočí K, Krejčíková S, Šolcová O, Obalová L (2012) Catal Today 191:134–137

    Article  Google Scholar 

  7. Sano T, Negishi N, Mas D, Takeuchi K (2000) J Catal 194:71–79

    Article  Google Scholar 

  8. Matějová L, Šihor M, Brunátová T, Ambrožová T, Reli M, Čapek L, Obalová L, Kočí K (2015) Res Chem. Intermed

  9. Manzanares M, Fàbrega C, Oriol Ossó L, Vega LF, Andreu T, Morante JR (2014) Appl Catal B Environ 150-151:57–62

    Article  Google Scholar 

  10. Sasirekha N, Basha S, Shanthi K (2006) Appl Catal B 62:169–180

    Article  Google Scholar 

  11. Tseng IH, Wu JCS, Chou H-Y (2004) J Catal 221:432–440

    Article  Google Scholar 

  12. Zhang Q-H, Han W-D, Hong Y-J, Yu J-G (2009) Catal Today 148:335–340

    Article  Google Scholar 

  13. Matějová L, Kočí K, Reli M, Čapek L, Matějka V, Šolcová O, Obalová L (2013) Appl Surf Sci 285:688–696

    Article  Google Scholar 

  14. Koci K, Matejova L, Reli M, Capek L, Matejka V, Lacny Z, Kustrowski P, Obalova L (2014) Catal Today 230:20–26

    Article  Google Scholar 

  15. Matejova L, Koci K, Reli M, Capek L, Hospodkova A, Peikertova P, Matej Z, Obalova L, Wach A, Kustrowski P, Kotarba A (2014) Appl Catal B Environ 152:172–183

    Article  Google Scholar 

  16. Wang YG, Li B, Zhang CL, Cui LF, Kang SF, Li X, Zhou LH (2013) Appl Catal B Environ 130:277–284

    Article  Google Scholar 

  17. Jiao JQ, Wei YC, Zhao Z, Liu J, Li JM, Duan AJ, Jiang GY (2014) Ind Eng Chem Res 53:17345–17354

    Article  Google Scholar 

  18. Reli M, Ambrozova N, Sihor M, Matejova L, Capek L, Obalova L, Matej Z, Kotarba A, Koci K (2015) Appl Catal B Environ 178:108–116

    Article  Google Scholar 

  19. Matejova L, Cajthaml T, Matej Z, Benada O, Kluson P, Solcova O (2010) J Supercrit Fluid 52:215–221

    Article  Google Scholar 

  20. Matejova L, Vales V, Fajgar R, Matej Z, Holy V, Solcova O (2013) J Solid State Chem 198:485–495

    Article  Google Scholar 

  21. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  Google Scholar 

  22. Scardi P, Leoni M (2002) Acta Crystallogr A: Found Crystallogr 58:190–200

    Article  Google Scholar 

  23. Matěj Z, Kužel R, Nichtová L (2010) Powder Diffr 25:125–131

    Article  Google Scholar 

  24. Matej Z, Matejova L, Kuzel R (2013) Powder Diffr 28:S161–S183

    Article  Google Scholar 

  25. MdlM Ballari R, Brandi O, Alfano AC (2008) Chem Eng J 136:50–65

    Article  Google Scholar 

  26. Koci K, Obalova L, Placha D, Lacny Z (2008) Collect Czech Chem Commun 73:1192–1204

    Article  Google Scholar 

  27. Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J, Šolcová O (2009) Appl Catal B Environ 89:494–502

    Article  Google Scholar 

  28. Obalová L, Maniak G, Karásková K, Kovanda F, Kotarba A (2011) Catal Commun 12:1055–1058

    Article  Google Scholar 

  29. Maniak G, Stelmachowski P, Stanek JJ, Kotarba A, Sojka Z (2011) Catal Commun 15:127–131

    Article  Google Scholar 

  30. Legutko P, Stelmachowski P, Trębala M, Sojka Z, Kotarba A (2013) Top Catal 56:489–492

    Article  Google Scholar 

  31. Magesh G, Viswanathan B, Viswanath RP, Varadarajan TK (2009) Indian J Chem A Inorg Phys Theor Anal Chem 48:480–488

    Google Scholar 

  32. Xu YH, Chen HR, Zeng ZX, Lei B (2006) Appl Surf Sci 252:8565–8570

    Article  Google Scholar 

  33. Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH (2005) Appl Catal A 285:181–189

    Article  Google Scholar 

  34. Xie Y, Yuan C, Li X (2005) Mater Sci Eng B Solid State Adv Technol 117:325–333

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic (projects reg. Nos. 14-35327J and 14-23274S). Authors also thank to the support of the project SP2015/125 and projects in National Feasibility Program I LO1404 “TUCENET” and LO1208 “TEWEP” from Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila Kočí.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kočí, K., Matějová, L., Ambrožová, N. et al. Optimization of cerium doping of TiO2 for photocatalytic reduction of CO2 and photocatalytic decomposition of N2O. J Sol-Gel Sci Technol 78, 550–558 (2016). https://doi.org/10.1007/s10971-016-3994-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3994-3

Keywords

Navigation