Skip to main content
Log in

Low-temperature synthesis of titanium oxide/gold nanoparticle composite powders using a combination of the sol–gel process and ultraviolet light irradiation

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Amorphous titanium oxide/plasmonic gold nanoparticle composite powders were synthesized by a combination of the sol–gel process and ultraviolet light irradiation using light-emitting diode at room temperature. The resultant composite powders were dried at ~50 °C. These amorphous titanium oxide/gold nanoparticle composite powders were heated to 450 °C to obtain crystalline titanium oxide/gold nanoparticles. The formation and microstructure of the titanium oxide/gold nanoparticle composite powders were confirmed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermo gravimetry–differential thermal analysis, and optical absorption measurements. A clear plasmonic absorption band due to typical plasmonic gold nanoparticle was observed in both composite powders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    Article  Google Scholar 

  3. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) J Am Chem Soc 131:6050–6051

    Article  Google Scholar 

  4. Jung HS, Park N-G (2015) Small 11:10–25

    Article  Google Scholar 

  5. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Science 317:222–225

    Article  Google Scholar 

  6. Kuwabara T, Sugiyama H, Yamaguchi T, Takahashi K (2009) Thin Solid Films 517:3766–3769

    Article  Google Scholar 

  7. Kuwabara T, Kuzuba M, Emoto N, Yamaguchi T, Taima T, Takahashi K (2014) Jpn J Appl Phys 53 (2 PART 2):02BE06 (6 pages)

  8. Hu L, Yoko T, Kozuka H, Sakka S (1992) Thin Solid Films 219:18–23

    Article  Google Scholar 

  9. Sakka S (1994) J Sol–Gel Sci Technol 3:69–81

    Article  Google Scholar 

  10. Nie S, Emory SR (1997) Science 275:1102–1106

    Article  Google Scholar 

  11. Nikoobakht B, Wang J, El-Sayed MA (2002) Chem Phys Lett 366:17–23

    Article  Google Scholar 

  12. Asian K, Wu M, Lakowicz JR, Geddes CD (2007) J Am Chem Soc 129:1524–1525

    Article  Google Scholar 

  13. Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Nano Lett 7:496–501

    Article  Google Scholar 

  14. Ishida A, Kumagai K (2009) Chem Lett 38:144–145

    Article  Google Scholar 

  15. Terasaki N, Nitahara S, Akiyama T, Yamada S (2005) Jpn J Appl Phys 44(4B):2795–2798

    Article  Google Scholar 

  16. Akiyama T, Nakada M, Terasaki N, Yamada S (2006) Chem Commun 395–397

  17. Sugawa K, Akiyama T, Kawazumi H, Yamada S (2009) Langmuir 25:3887–3893

    Article  Google Scholar 

  18. Ikeda K, Takahashi K, Masuda T, Uosaki K (2011) Angew Chem Int Ed 50:1280–1284

    Article  Google Scholar 

  19. Innocenzi P, Brusatin G, Martucci A, Urabe K (1996) Thin Solid Films 279:23–28

    Article  Google Scholar 

  20. Zhao G, Kozuka H, Yoko T (1996) Thin Solid Films 277:147–154

    Article  Google Scholar 

  21. Matsuoka J, Naruse R, Nasu H, Kamiya K (1997) J Non-Cryst Solids 218:151–155

    Article  Google Scholar 

  22. Epifani M, Giannini C, Tapfer L, Vasanelli L (2000) J Am Ceram Soc 83:2385–2395

    Article  Google Scholar 

  23. Matsuoka J, Yoshida H, Nasu H, Kamiya K (1997) J Sol–Gel Sci Technol 9:145–155

    Google Scholar 

  24. Kawamura G, Murakami M, Okuno T, Muto H, Matsubara A (2011) RSC Adv 1:584–587

    Article  Google Scholar 

  25. Kawamura G, Okuno T, Muto H, Matsuda A (2012) Nanoscale Res Lett 7:1–27

    Article  Google Scholar 

  26. Tian Y, Tatsuma T (2005) J Am Chem Soc 127:7632–7637

    Article  Google Scholar 

  27. Arakawa T, Kawahara T, Akiyama T, Yamada S (2007) Jpn J Appl Phys 46(4B):2490–2492

    Article  Google Scholar 

  28. Akiyama T, Kawahara T, Arakawa T, Yamada S (2008) Jpn J Appl Phys 47:3063–3066

    Article  Google Scholar 

  29. Viana MM, Mohallem NDS, Miquita DR, Balzuweit K, Silva-Pinto E (2013) Appl Surf Sci 265:130–136

    Article  Google Scholar 

  30. Viana MM, De Paula CC, Miquita DR, Mohallem NDS (2011) J Sol–Gel Sci Technol 59:19–24

    Article  Google Scholar 

  31. Akiyama T, Matsumoto T, Oku T (2013) The 11th meeting of the Japanese sol–gel society. Hiroshima University, Japan 72

    Google Scholar 

  32. Akiyama T, Sakaguchi H (2014) The 5th international symposium of advanced energy science. Kyoto University, Japan 185

    Google Scholar 

  33. Matsumoto T, Akiyama T, Oku T (2014) The 17th SANKEN international symposium. Osaka University, Japan 135

    Google Scholar 

  34. Akiyama T, Matsumoto T, Banya S, Oku T (2015) XVIII International Sol-Gel Conference, Kyoto, Japan P-Tu-4-18

Download references

Acknowledgments

This work was partially supported by the “Joint Usage/Research Program on Zero-Emission Energy Research” at the Institute of Advanced Energy, Kyoto University (ZE25B-19 and ZE26B-15). T.A. also wishes to thank the “Adaptable and Seamless Technology Transfer Program through Target-driven R&D (AS231Z00944C)” of the Japan Science and Technology Agency for its partial support of this study. The authors would like to acknowledge Professor B. Jeyadevan (The University of Shiga Prefecture) for the TG–DTA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Akiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, T., Akiyama, T., Banya, S. et al. Low-temperature synthesis of titanium oxide/gold nanoparticle composite powders using a combination of the sol–gel process and ultraviolet light irradiation. J Sol-Gel Sci Technol 78, 692–697 (2016). https://doi.org/10.1007/s10971-016-3990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3990-7

Keywords

Navigation