Journal of Sol-Gel Science and Technology

, Volume 78, Issue 3, pp 475–481 | Cite as

Synthesis and characterization of superhydrophobic–superoleophilic surface

  • Satish A. MahadikEmail author
  • Fernado D. Pedraza
  • Brahmanand P. Relekar
  • Vinayak. G. Parale
  • Gaurav M. Lohar
  • Sagar S. Thorat
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)


The binary superhydrophobic–superhydrophilic surface has been successfully achieved by a combination of nanoscale texture roughness on micro-textured cotton thread network by layer-by-layer deposition method through the single-step sol–gel route. Furthermore, microstructures with improved wettability were produced, in which silica nanotextures were grown without modifying the chemical method to form superoleophilic and superhydrophobic networks. A superoleophilic surface (oil contact angle 0°) and a superhydrophobic coated cotton fabric with surface free energy of γ total = 13. 23 ± 0.37 mJ m−2 (water contact angle of 167 ± 1° and a small sliding angle of 4 ± 1°) were successfully obtained. The results were exemplified here by the creation of immiscible oils separation membranes, and the innumerable applications of this technology also include self-cleaning fabrics, antistaining fabrics, water purification, and antiwetting fabrics for military applications.

Graphical Abstract


Layer-by-layer deposition method Superhydrophobic–superoleophilic surface Sol–gel processing Contact angle 



The author acknowledges the Department of Physics, Shivaji University, Kolhapur, India, for providing experimental facility.


  1. 1.
    Zhang W, Lu X, Xin Z (2015) Nanoscale 7:19476–19483CrossRefGoogle Scholar
  2. 2.
    Liu F, Ma M, Zang D, Gao Z, Wang C (2014) Carbohyd Polym 103:480–487CrossRefGoogle Scholar
  3. 3.
    Du C, Wang J, Chen Z, Chen D (2014) Appl Surf Sci 313:304–310CrossRefGoogle Scholar
  4. 4.
    Xu L, Xiao G, Chen C, Li R, Mai Y, Sun G, Yan D (2015) J Mater Chem A 3:7498–7504CrossRefGoogle Scholar
  5. 5.
    Wang C, Lin S (2013) ACS Appl Mater Interfaces 5:8861–8864CrossRefGoogle Scholar
  6. 6.
    Mahadik SA, Kavale MS, Mukherjee SK, Rao AV (2010) Appl Surf Sci 257:333–339CrossRefGoogle Scholar
  7. 7.
    Mahadik SA, Vhatkar RS, Mahadik DB, Kavale MS, Wagh PB, Gupta S (2010) Appl Surf Sci 277:67–72CrossRefGoogle Scholar
  8. 8.
    Mahadik DB, Lee YK, Chavan NK, Mahadik SA, Park HH (2016) J Supercrit Fluid 107:84–91CrossRefGoogle Scholar
  9. 9.
    Crick CR, Bear JC, Kafizas A, Parkin IP (2012) Adv Mater 24:3505–3508CrossRefGoogle Scholar
  10. 10.
    Pedraza FD, Mahadik SA, Bouchaud B (2015) Phys Chem Chem Phys 17:31750–31757CrossRefGoogle Scholar
  11. 11.
    Li Y, Jia W, Song Y, Xia X (2007) Chem Mater 19:5758–5764CrossRefGoogle Scholar
  12. 12.
    Chen Q, Bae SC, Granick S (2011) Nature 469:381–384CrossRefGoogle Scholar
  13. 13.
    Mahadik SA, Mahadik DB, Kavale MS, Parale VG, Wagh PB, Barshilia HC (2012) J Sol-Gel Sci Techn 63:580–586CrossRefGoogle Scholar
  14. 14.
    Ogihara H, Xie J, Okagaki J, Saji T (2012) Langmuir 28:4605–4608CrossRefGoogle Scholar
  15. 15.
    Li Y, Zhang J, Zhu S, Dong H, Jia F, Wang Z, Tang Y, Zhang L, Zhang S, Yang B (2010) Langmuir 26:9842–9847CrossRefGoogle Scholar
  16. 16.
    Kavale MS, Mahadik SA, Mahadik DB, Parale VG, Rao AV, Vhatkar RS (2012) J Sol-Gel Sci Techn 64:9–16CrossRefGoogle Scholar
  17. 17.
    Nguyen DD, Tai N, Lee S, Kuo W (2012) Energy Environ Sci 5:7908–7912CrossRefGoogle Scholar
  18. 18.
    Parale VG, Mahadik DB, Mahadik SA, Kavale MS, Wagh PB, Gupta SC (2013) Ceram Int 39:835–840CrossRefGoogle Scholar
  19. 19.
    Parale VG, Mahadik DB, Kavale MS, Mahadik SA, Rao AV, Mullens S (2013) J Porous Mater 20:733–739CrossRefGoogle Scholar
  20. 20.
    Ganbavle VV, Bangi UKH, Latthe SS, Mahadik SA, Rao AV (2011) Surf Coat Tech 205:5338–5344CrossRefGoogle Scholar
  21. 21.
    Nimittrakoolchai O, Supothina S (2008) J Euro Ceram Soc 28:947–952Google Scholar
  22. 22.
    Mahadik SA, Pedraza FD, Vathkar RS (2016) J Alloys Compd 663:487–493CrossRefGoogle Scholar
  23. 23.
    Rao AV, Mahadik SA, Kappenstein C (2011) Appl Surf Sci 257:5772–5776CrossRefGoogle Scholar
  24. 24.
    Ju J, Wang T, Wang Q (2015) J Appl Polym Sci 132(1–7):42077Google Scholar
  25. 25.
    Yanlong S, Wu Y, Xiaojuan F (2015) Chem J Chin U 36:1724–1729Google Scholar
  26. 26.
    Feng L, Jiang Angew L (2004) Chem Int Ed 43:2012–2014CrossRefGoogle Scholar
  27. 27.
    Zhang X, Zhang P, Appl ACS (2012) Mater Inter 4:1742–1746CrossRefGoogle Scholar
  28. 28.
    Pernites RB, Advincula RC (2011) Adv Mater 23:3207–3213CrossRefGoogle Scholar
  29. 29.
    Xue X, Li Y, Ma J, Appl ACS (2014) Mater Inter 6:10153–10161CrossRefGoogle Scholar
  30. 30.
    Zimmermann J, Seeger S (2008) Adv Funct Mater 18:1–8CrossRefGoogle Scholar
  31. 31.
    Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546–561CrossRefGoogle Scholar
  32. 32.
    Owens D, Wendt R (1969) J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  33. 33.
    Wang D, Liu X, Zhou F (2010) J Phys Chem 114:9938–9944Google Scholar
  34. 34.
    Cheng Z, Wang J, Lai H (2015) Langmuir 31:1393–1399CrossRefGoogle Scholar
  35. 35.
    Mahadik SA, Hegade ND, Gupta SC, Wagh PB (2013) J Colloid Interface Sci 405:262–268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Satish A. Mahadik
    • 1
    Email author
  • Fernado D. Pedraza
    • 1
  • Brahmanand P. Relekar
    • 2
  • Vinayak. G. Parale
    • 3
  • Gaurav M. Lohar
    • 2
  • Sagar S. Thorat
    • 4
  1. 1.Laboratoire des Sciences de L’Ingénieur pour l’Environnement (LaSIE, FRE-CNRS3474)Université de La RochelleLa Rochelle Cedex 01France
  2. 2.Department of PhysicsShivaji UniversityKolhapurIndia
  3. 3.Rajarambapu Institute of Technology, SakharaleUran IslampurIndia
  4. 4.Organic Chemistry Division (OCD)CSIR- National Chemical LaboratoryPuneIndia

Personalised recommendations