Skip to main content

Advertisement

Log in

Review of aerogel-based materials in biomedical applications

  • Review Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Due to their many excellent properties, aerogels attract much interest in various applications, ranging from construction to medicine. Over the last decades, their potential was practically exploited only in non-medical fields of use, although many aerogel materials, either organic, inorganic or hybrid, were proven biocompatible. Some aerogel compositions have been patented at the verge of the millennium, but the clinical use of aerogels remains very limited. This review intends to shed some more light in regard to their potential in biomedical applications as can be deduced from the more recent progressive research of their capabilities in regard to different compositions. The review covers many recent studies, but includes older research that significantly affected the development of aerogel-based materials over the years, as well. After a short introduction, covering the common aerogel properties and their possible classification options, the review is structured based on their different possible biomedical applications. Finally, it focuses on the potential of aerogels in regenerative medicine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297(1–2):212–223

    Article  Google Scholar 

  2. Akimov YK (2003) Fields of application of aerogels (review). Instrum Exp Technol 46(3):287–299

    Article  Google Scholar 

  3. Yin W, Rubenstein D (2011) Biomedical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 683–694

    Google Scholar 

  4. Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater. doi:10.1155/2010/409310

    Google Scholar 

  5. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225(1–3):335–342

    Article  Google Scholar 

  6. Husing N, Schubert U (1998) Aerogels airy materials: chemistry, structure, and properties. Angew Chem Int Edit 37(1–2):23–45

    Google Scholar 

  7. Rajendar RM, Michael AM, Vasudha S, Bano S, Raj RR, Subhas CK, Mark AM (2015) Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomed Mater 10(3):035002

    Article  Google Scholar 

  8. García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohyd Polym 117:797–806

    Article  Google Scholar 

  9. Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 105:1–8

    Article  Google Scholar 

  10. Sun YR, Yang MX, Yu F, Chen JH, Ma J (2015) Synthesis of graphene aerogel adsorbents and their applications in water treatment. Prog Chem 27(8):1133–1146

    Google Scholar 

  11. Gao T, Jelle BP, Gustavsen A, He JY (2015) Synthesis and characterization of aerogel glass materials for window glazing applications. Adv Bioceram Porous Ceram Vii:140–149

    Google Scholar 

  12. Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallee H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15(6):2188–2195

    Article  Google Scholar 

  13. Veronovski A, Tkalec G, Knez Z, Novak Z (2014) Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohyd Polym 113:272–278

    Article  Google Scholar 

  14. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266

    Article  Google Scholar 

  15. Barnyakov AY, Barnyakov MY, Bobrovnikov VS, Buzykaev AR, Gulevich VV, Danilyuk AF, Katcin AA, Kononov SA, Kravchenko EA, Kuyanov IA, Onuchin AP, Ovtin IV, Rodyakin VA (2014) Threshold aerogel Cherenkov counters of the KEDR detector. J Instrum 9:C09005

    Article  Google Scholar 

  16. Tonguc BT, Citci S (2014) Aerogel efficiencies of threshold Cherenkov counters. Arab J Sci Eng 39(7):5739–5743

    Article  Google Scholar 

  17. Sabri F, Marchetta JG, Rifat Faysal KM, Brock A, Roan E (2014) Effect of aerogel particle concentration on mechanical behavior of impregnated RTV 655 compound material for aerospace applications. Adv Mater Sci Eng. doi:10.1155/2014/716356

    Google Scholar 

  18. Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Inter 3(3):613–626

    Article  Google Scholar 

  19. Zhang XX, Wei GS, Yu F (2005) Influence of some parameters on effective thermal conductivity of nano-porous aerogel super insulator. In: HT2005: proceedings of the ASME summer heat transfer conference 2005, vol 1 pp 7–12

  20. Venkataraman M, Mishra R, Arumugam V, Jamshaid H, Militky J (2015) Acoustic properties of aerogel embedded nonwoven fabrics. In: 6th International conference on Nanocon 2014, pp 24–130

  21. Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustain Basel 6(9):5839–5852

    Article  Google Scholar 

  22. Wang JC, Shen J, Ni XY, Wang B, Wang XD, Li J (2010) Acoustic properties of nanoporous silica aerogel. Rare Metal Mater Eng 39:14–17

    Google Scholar 

  23. Habib Ullah M et al (2015) Aerogel poly(butylene succinate) biomaterial substrate for RF and microwave applications. Sci Rep 5:12868. doi:10.1038/srep12868

    Article  Google Scholar 

  24. Julio MD, Ilharco LM (2014) Superhydrophobic hybrid aerogel powders from waterglass with distinctive applications. Microporous Mesoporous Mater 199:29–39

    Article  Google Scholar 

  25. Veres P, Lopez-Periago AM, Lazar I, Saurina J, Domingo C (2015) Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int J Pharm 496(2):360–370

    Article  Google Scholar 

  26. Gaudio PD, Auriemma G, Mencherini T, Porta GD, Reverchon E, Aquino RP (2013) Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J Pharm Sci 102(1):185–194

    Article  Google Scholar 

  27. Garcia-Gonzalez CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohyd Polym 86(4):1425–1438

    Article  Google Scholar 

  28. Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Control Release 177:51–63

    Article  Google Scholar 

  29. Mikkonen KS, Parikka K, Ghafar A, Tenkanen M (2013) Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci Technol 34(2):124–136

    Article  Google Scholar 

  30. Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non-Cryst Solids 285(1–3):303–308

    Article  Google Scholar 

  31. Fang LX, Huang KJ, Liu Y (2015) Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification. Biosens Bioelectron 71:171–178

    Article  Google Scholar 

  32. Peng L, Dong SY, Li N, Suo GC, Huang TL (2015) Construction of a biocompatible system of hemoglobin based on AuNPs–carbon aerogel and ionic liquid for amperometric biosensor. Sens Actuat B Chem 210:418–424

    Article  Google Scholar 

  33. Sun QQ, Xu MW, Bao SJ, Li CM (2015) pH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor. Nanotechnology 26(11):115602

    Article  Google Scholar 

  34. Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils. J Renew Mater 1(3):195–211

    Article  Google Scholar 

  35. Ren W, Cheng H-M (2013) Materials science: when two is better than one. Nature 497(7450):448–449

    Article  Google Scholar 

  36. Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 10(12):1847–1861

    Article  Google Scholar 

  37. Saboktakin A, Saboktakin MR (2015) Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int J Biol Macromol 72:230–234

    Article  Google Scholar 

  38. Du A, Zhou B, Zhang ZH, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968

    Article  Google Scholar 

  39. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston

    Google Scholar 

  40. Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energ Rev 34:273–299

    Article  Google Scholar 

  41. Riffat SB, Qiu G (2013) A review of state-of-the-art aerogel applications in buildings. Int J Low Carbon Technol 8(1):1–6

    Article  Google Scholar 

  42. Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63(3):315–339

    Article  Google Scholar 

  43. Qi ZK, Huang DM, He S, Yang H, Hu Y, Li LM, Zhang HP (2013) Thermal protective performance of aerogel embedded firefighter’s protective clothing. J Eng Fibers Fabr 8(2):134–139

    Google Scholar 

  44. Shaid A, Furgusson M, Wang L (2014) Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem Mater Eng 2(2):37–43

    Google Scholar 

  45. Hair LM, Pekala RW, Stone RE, Chen C, Buckley SR (1988) Low-density resorcinol formaldehyde aerogels for direct-drive laser inertial confinement fusion-targets. J Vac Sci Technol A 6(4):2559–2563

    Article  Google Scholar 

  46. Li N, Zhang Q, Liu J, Joo J, Lee A, Gan Y, Yin Y (2013) Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun (Camb) 49(45):5135–5137

    Article  Google Scholar 

  47. Mulik S, Sotiriou-Leventis C (2011) Resorcinol–formaldehyde aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 215–234

    Google Scholar 

  48. Welsch F (2008) Routes and modes of administration of resorcinol and their relationship to potential manifestations of thyroid gland toxicity in animals and man. Int J Toxicol 27(1):59–63

    Article  Google Scholar 

  49. Welsch F, Nemec MD, Lawrence WB (2008) Two-generation reproductive toxicity study of resorcinol administered via drinking water to Crl:CD(SD) Rats. Int J Toxicol 27(1):43–57

    Article  Google Scholar 

  50. Wang XL, Ben Ahmed N, Alvarez GS, Tuttolomondo MV, Helary C, Desimone MF, Coradin T (2015) Sol–gel encapsulation of biomolecules and cells for medicinal applications. Curr Top Med Chem 15(3):223–244

    Article  Google Scholar 

  51. Li G, Zhu T, Deng Z, Zhang Y, Jiao F, Zheng H (2011) Preparation of Cu–SiO2 composite aerogel by ambient drying and the influence of synthesizing conditions on the structure of the aerogel. Chin Sci Bull 56(7):685–690

    Article  Google Scholar 

  52. Hair LM, Coronado PR, Reynolds JG (2000) Mixed-metal oxide aerogels for oxidation of volatile organic compounds. J Non-Cryst Solids 270(1–3):115–122

    Article  Google Scholar 

  53. Giray S, Bal T, Kartal AM, Kizilel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100(5):1307–1315

    Article  Google Scholar 

  54. Buisson P, Hernandez C, Pierre M, Pierre AC (2001) Encapsulation of lipases in aerogels. J Non-Cryst Solids 285(1–3):295–302

    Article  Google Scholar 

  55. Guenther U, Smirnova I, Neubert RHH (2008) Hydrophilic silica aerogels as dermal drug delivery systems—dithranol as a model drug. Eur J Pharm Biopharm 69(3):935–942

    Article  Google Scholar 

  56. Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355(50–51):2472–2479

    Article  Google Scholar 

  57. Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 519–574

    Chapter  Google Scholar 

  58. Smirnova I (2011) Pharmaceutical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 695–717

    Google Scholar 

  59. Smirnova I, Suttiruengwong S, Arlt W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350:54–60

    Article  Google Scholar 

  60. Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 42(1):169–175

    Article  Google Scholar 

  61. Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface 8(4–5):396–400

    Article  Google Scholar 

  62. Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233

    Article  Google Scholar 

  63. Su C-W, Chen S-Y, Liu D-M (2013) ***Polysaccharide-lecithin reverse micelles with enzyme-degradable triglyceride shell for overcoming tumor multidrug resistance. Chem Commun 49(36):3772–3774

    Article  Google Scholar 

  64. Kamath KR, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Deliv Rev 11(1–2):59–84

    Article  Google Scholar 

  65. Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50(1):69–77

    Article  Google Scholar 

  66. Chang XH, Chen DR, Jiao XL (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112(26):7721–7725

    Article  Google Scholar 

  67. Weiser JR, Saltzman WM (2014) Controlled release for local delivery of drugs: barriers and models. J Control Release 190:664–673

    Article  Google Scholar 

  68. Reed S, Wu B (2014) Sustained growth factor delivery in tissue engineering applications. Ann Biomed Eng 42(7):1528–1536

    Article  Google Scholar 

  69. Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K (2015) Functional wound dressing materials with highly tunable drug release properties. RSC Adv 5(95):77873–77884

    Article  Google Scholar 

  70. Lee WL, Shi WX, Low ZY, Li SZ, Loo SCJ (2012) Modeling of drug release from biodegradable triple-layered microparticles. J Biomed Mater Res A 100A(12):3353–3362

    Article  Google Scholar 

  71. Delfour MC (2012) Drug release kinetics from biodegradable polymers via partial differential equations models. Acta Appl Math 118(1):161–183

    Article  Google Scholar 

  72. Lao LL, Peppas NA, Boey FYC, Venkatraman SS (2011) Modeling of drug release from bulk-degrading polymers. Int J Pharm 418(1):28–41

    Article  Google Scholar 

  73. Maver U, Godec A, Bele M, Planinšek O, Gaberšček M, Srčič S, Jamnik J (2007) Novel hybrid silica xerogels for stabilization and controlled release of drug. Int J Pharm 330(1–2):164–174

    Article  Google Scholar 

  74. Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U (2015) Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol–Gel Sci Technol. doi:10.1007/s10971-015-3888-9

    Google Scholar 

  75. García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion–gelation method. Carbohyd Polym 88(4):1378–1386

    Article  Google Scholar 

  76. Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–173

    Article  Google Scholar 

  77. Colilla M, Baeza A, Vallet-Regí M (2015) Mesoporous silica nanoparticles for drug delivery and controlled release applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1309–1344

    Chapter  Google Scholar 

  78. Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74

    Article  Google Scholar 

  79. Rosenholm JM, Linden M (2008) Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J Control Release 128(2):157–164

    Article  Google Scholar 

  80. Smirnova I, Suttiruengwong S, Seiler M, Arlt W (2004) Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol 9(4):443–452

    Article  Google Scholar 

  81. Murillo-Cremaes N, Lopez-Periago AM, Saurina J, Roig A, Domingo C (2013) Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J Supercrit Fluid 73:34–42

    Article  Google Scholar 

  82. Caputo G (2013) Fixed bed adsorption of drugs on silica aerogel from supercritical carbon dioxide solutions. Int J Chem Eng 2013:7

    Article  Google Scholar 

  83. Schwertfeger F, Zimmermann A, Krempel H (2001) Use of inorganic aerogels in pharmacy. Google Patents

  84. Godec A, Maver U, Bele M, Planinsek O, Srcic S, Gaberscek M, Jamnik J (2007) Vitrification from solution in restricted space: formation and stabilization of amorphous nifedipine in a nanoporous silica xerogel carrier. Int J Pharm 343(1–2):131–140

    Article  Google Scholar 

  85. Berg A, Droege MW, Fellmann JD, Klaveness J, Rongved P (1996) Medical use of organic aerogels and biodegradable organic aerogels. Google Patents

  86. Lee KP, Gould GL (2006) Aerogel powder therapeutic agents. Google Patents

  87. Marin MA, Mallepally RR, McHugh MA (2014) Silk fibroin aerogels for drug delivery applications. J Supercrit Fluids 91:84–89

    Article  Google Scholar 

  88. Betz M, Garcia-Gonzalez CA, Subrahmanyam RP, Smirnova I, Kulozik U (2012) Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J Supercrit Fluid 72:111–119

    Article  Google Scholar 

  89. Chiang C-Y, Chu C-C (2015) Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohyd Polym 119:18–25

    Article  Google Scholar 

  90. Abd El-Ghaffar MA, Hashem MS, El-Awady MK, Rabie AM (2012) pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohyd Polym 89(2):667–675

    Article  Google Scholar 

  91. Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64(Supplement):194–205

    Article  Google Scholar 

  92. Garcia-Gonzalez CA, Smirnova I (2013) Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluid 79:152–158

    Article  Google Scholar 

  93. Giray S, Bal T, Kartal AM, Kızılel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100A(5):1307–1315

    Article  Google Scholar 

  94. Wang X, Jana SC (2013) Synergistic hybrid organic–inorganic aerogels. ACS Appl Mater Interfaces 5(13):6423–6429

    Article  Google Scholar 

  95. Ree M, Goh WH, Kim Y (1995) Thin films of organic polymer composites with inorganic aerogels as dielectric materials: polymer chain orientation and properties. Polym Bull 35(1–2):215–222

    Article  Google Scholar 

  96. Sanli D, Ulker Z, Giray S, Kızılel S, Erkey C (2011) PEG-hydrogel coated silica aerogels: a novel drug delivery system. Paper presented at the 13th European meeting on supercritical fluids, The Hague, Netherlands

  97. Ulker Z, Erkey C (2014) A novel hybrid material: an inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Adv 4(107):62362–62366

    Article  Google Scholar 

  98. Holland SJ, Tighe BJ, Gould PL (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Control Release 4(3):155–180

    Article  Google Scholar 

  99. Venkatraman S, Boey F, Lao LL (2008) Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Prog Polym Sci 33(9):853–874

    Article  Google Scholar 

  100. Claiborne TE, Slepian MJ, Hossainy S, Bluestein D (2012) Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Dev 9(6):577–594

    Article  Google Scholar 

  101. Yang WW, Pierstorff E (2012) Reservoir-based polymer drug delivery systems. J Lab Autom 17(1):50–58

    Article  Google Scholar 

  102. Smith IO, Liu XH, Smith LA, Ma PX (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(2):226–236

    Article  Google Scholar 

  103. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar S (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:19

    Article  Google Scholar 

  104. Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136

    Article  Google Scholar 

  105. Agrawal P, Soni S, Mittal G, Bhatnagar A (2014) Role of polymeric biomaterials as wound healing agents. Int J Lower Extrem Wounds 13(3):180–190

    Article  Google Scholar 

  106. Jones JR (2015) Sol–gel materials for biomedical applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1345–1370

    Chapter  Google Scholar 

  107. Lee H, Homma A, Tatsumi E, Taenaka Y (2010) Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing. J Artif Organs 13(1):17–23

    Article  Google Scholar 

  108. Claiborne TE, Bluestein D, Schoephoerster RT (2009) Development and evaluation of a novel artificial catheter-deliverable prosthetic heart valve and method for in vitro testing. Int J Artif Organs 32(5):262–271

    Google Scholar 

  109. Yin W, Venkitachalam SM, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein DA (2010) Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells. J Biomed Mater Res A 92(4):1431–1439

    Google Scholar 

  110. Toledo-Fernández J, Mendoza-Serna R, Morales V, de la Rosa-Fox N, Piñero M, Santos A, Esquivias L (2008) Bioactivity of wollastonite/aerogels composites obtained from a TEOS–MTES matrix. J Mater Sci Mater Med 19(5):2207–2213

    Article  Google Scholar 

  111. Ayers MR, Hunt AJ (2001) Synthesis and properties of chitosan-silica hybrid aerogels. J Non-Cryst Solids 285(1–3):123–127

    Article  Google Scholar 

  112. Cardea S, Pisanti P, Reverchon E (2010) Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process. J Supercrit Fluids 54(3):290–295

    Article  Google Scholar 

  113. Aimé C, Coradin T, Fernandes FM (2015) Biomimetic sol–gel materials. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 605–650

    Chapter  Google Scholar 

  114. Nakanishi K (2015) Properties and applications of sol–gel materials: functionalized porous amorphous solids (monoliths). In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 745–766

    Chapter  Google Scholar 

  115. Ge J, Li M, Zhang Q, Yang CZ, Wooley PH, Chen X, Yang S-Y (2013) Silica aerogel improves the biocompatibility in a poly-caprolactone composite used as a tissue engineering scaffold. Int J Polym Sci 2013:7

    Article  Google Scholar 

  116. Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21(1):27–47

    Google Scholar 

  117. Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159

    Article  Google Scholar 

  118. Raman SP, Gurikov P, Smirnova I (2015) Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications. J Supercrit Fluids 106:23–33

    Article  Google Scholar 

  119. Rocco P, Viggiano I, Schiraldi DA (2014) Fabrication and mechanical characterization of lignin-based aerogels. Green Mater 2(3):153–158

    Article  Google Scholar 

  120. Yu H, Wooley PH, Yang S-Y (2009) Biocompatibility of poly-ε-caprolactone–hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J Orthop Surg Res 4(1):1–9

    Article  Google Scholar 

  121. Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6(5):2583–2589

    Article  Google Scholar 

  122. Wu KJ, Wu CS, Chang JS (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp PG01. Process Biochem 42(4):669–675

    Article  Google Scholar 

  123. Lu TH, Li Q, Chen WS, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138

    Article  Google Scholar 

  124. Abdelrahman T, Newton H (2011) Wound dressings: principles and practice. Surgery (Oxford) 29(10):491–495

    Article  Google Scholar 

  125. Boyce ST, Warden GD (2002) Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 183(4):445–456

    Article  Google Scholar 

  126. Benbow M (2010) Managing wound pain: Is there an ‘ideal dressing’? Br J Nurs 19(20):1273–1274

    Article  Google Scholar 

  127. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    Article  Google Scholar 

  128. Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457(1):82–91

    Article  Google Scholar 

  129. Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662

    Article  Google Scholar 

  130. Choi JS, Kim HS, Yoo HS (2015) Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 5(2):137–145

    Article  Google Scholar 

  131. Maver T, Maver U, Mostegel F, Grieser T, Spirk S, Smrke D, Stana Kleinschek K (2015) Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose 22:749–761

    Article  Google Scholar 

  132. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337

    Article  Google Scholar 

  133. Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler U-C, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471(1–2):45–55

    Article  Google Scholar 

  134. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611

    Article  Google Scholar 

  135. Hrubesh LW, Pekala RW (1994) Dielectric properties and electronic applications of aerogels. In: Attia Y (ed) Sol–gel processing and applications. Springer, Berlin, pp 363–367

    Chapter  Google Scholar 

  136. Sinko K, Cser L, Mezei R, Avdeev M, Peterlik H, Trimmel G, Husing N, Fratzl P (2000) Structure investigation of intelligent aerogels. Phys B 276:392–393

    Article  Google Scholar 

  137. Lawrence Livermore National L, United S, Department of E, United S, Department of E, Office of S, Technical I (1995) The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water. United States. Dept. of Energy; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. http://worldcat.org. http://www.osti.gov/servlets/purl/80970-2Z3y2Y/webviewable/

  138. Contolini RJ, Hrubesh LW, Bernhardt AF (1993) Aerogels for microelectronic applications: fast inexpensive, and light as air. Lawrence Livermore National Lab, Livermore

    Google Scholar 

  139. Poelz G, Riethmuller R (1982) Preparation of silica aerogel for Cherenkov counters. Nucl Instrum Methods 195(3):491–503

    Article  Google Scholar 

  140. Sallaz-Damaz Y, Derome L, Mangin-Brinet M, Loth M, Protasov K, Putze A, Vargas-Trevino M, Veziant O, Buenerd M, Menchaca-Rocha A, Belmont E, Vargas-Magana M, Leon-Vargas H, Ortiz-Velasquez A, Malinine A, Barao F, Pereira R, Bellunato T, Matteuzzi C, Perego DL (2010) Characterization study of silica aerogel for Cherenkov imaging. Nucl Instrum Meth A 614(2):184–195

    Article  Google Scholar 

  141. Allkofer Y, Amsler C, Horikawa S, Johnson I, Regenfus C, Rochet J (2007) A novel aerogel Cherenkov detector for DIRAC-II. Nucl Instrum Methods A 582(2):497–508

    Article  Google Scholar 

  142. Kharzheev YN (2008) Use of silica aerogels in Cherenkov counters. Phys Part Nucl 39(1):107–135

    Article  Google Scholar 

  143. Jensen KI, Schultz JM, Kristiansen FH (2004) Development of windows based on highly insulating aerogel glazings. J Non-Cryst Solids 350:351–357

    Article  Google Scholar 

  144. Xie Y, Beamish J (1996) Ultrasonic velocity and attenuation in silica aerogels at low temperatures. Czech J Phys 46:2723–2724

    Article  Google Scholar 

  145. Schlief T, Gross J, Fricke J (1992) Ultrasonic-attenuation in silica aerogels. J Non-Cryst Solids 145(1–3):223–226

    Article  Google Scholar 

  146. Merzbacher CI, Meier SR, Pierce JR, Korwin ML (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285(1–3):210–215

    Article  Google Scholar 

  147. Moreno-Castilla C, Maldonado-Hodar FJ (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465

    Article  Google Scholar 

  148. Jones SM (2006) Aerogel: space exploration applications. J Sol–Gel Sci Technol 40(2–3):351–357

    Article  Google Scholar 

  149. Reynolds JG, Coronado PR, Hrubesh LW (2001) Hydrophobic aerogels for oil-spill cleanup—intrinsic absorbing properties. Energ Source 23(9):831–843

    Article  Google Scholar 

  150. Krainov VP, Smirnov MB (2002) Laser induced fusion in aerogel. Laser Phys 12(4):781–785

    Google Scholar 

  151. Krainov VP, Smirnov MB (2001) Nuclear fusion induced by a super-intense ultrashort laser pulse in a deuterated glass aerogel. J Exp Theor Phys 93(3):485–490

    Article  Google Scholar 

  152. Cumana S, Ardao I, Zeng A-P, Smirnova I (2014) Glucose-6-phosphate dehydrogenase encapsulated in silica-based hydrogels for operation in a microreactor. Eng Life Sci 14(2):170–179

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the WoodWisdom-NET + funded project Wood-based aerogels (acronym: AEROWOOD) with the Grant Number 3330-14-500041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uroš Maver.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stergar, J., Maver, U. Review of aerogel-based materials in biomedical applications. J Sol-Gel Sci Technol 77, 738–752 (2016). https://doi.org/10.1007/s10971-016-3968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3968-5

Keywords

Navigation