Skip to main content
Log in

Sol–gel preparation of Li-rich layered cathode material for lithium ion battery with polymer polyacrylic acid + citric acid chelators

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The sol–gel method was improved to synthesize the layered Li-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 by employing the mixture of polymer polyacrylic acid (PAA) and citric acid as the mixed chelator. The crystal structure, particle morphology and electrochemical performance of the prepared layered Li-rich cathode material are extensively studied by X-ray diffraction spectrometry, scanning electron microscopy, charge–discharge test, cyclic voltammetry and electrochemical impedance spectroscopy techniques. The results show that the Li-rich cathode materials prepared with the new method present explicit layer structure, low level of Li+/Ni2+ disordering, large specific surface area and accurate chemical composition. When measured with electrochemical test system, the prepared material exhibits a high capacity of 274.8 mAh g−1. The excellent performances of the prepared material could be ascribed to the fact that the novel approach combines the advantages of the two chelating agents of PAA and citric acid.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yabuuchi N, Yoshii K, Myung S-T, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419

    Article  Google Scholar 

  2. Shi SJ, Tu JP, Tang YY, Yu YX, Zhang YQ, Wang XL (2013) Synthesis and electrochemical performance of Li1.131Mn0.504Ni0.243Co0.122O2 cathode materials for lithium ion batteries via freeze drying. J Power Sources 221:300–307

    Article  Google Scholar 

  3. Johnson CS, Li NC, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C. Electrochem Commun 9:787–795

    Article  Google Scholar 

  4. Singh G, West WC, Soler J, Katiyar RS (2012) In situ Raman spectroscopy of layered solid solution Li2MnO3–LiMO2(M = Ni, Mn, Co). J Power Sources 218:34–38

    Article  Google Scholar 

  5. Li Z, Chernova NA, Feng J, Upreti S, Omenya F, Whittingham MS (2012) Stability and rate capability of Al substituted lithium-rich high-manganese content oxide materials for Li-ion batteries. J Electrochem Soc 159:A116–A120

    Article  Google Scholar 

  6. Yu H, Zhou H (2013) High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem Lett 4:1268–1271

    Article  Google Scholar 

  7. Xu B, Fell CR, Chi M, Meng YS (2011) Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci 4:2223–2228

    Article  Google Scholar 

  8. Kim JS, Johnson CS, Vaughey JT et al (2004) Electrochemical and structural properties of xLi2M’O3·(1−x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M’=Ti, Mn, Zr; 0 ≤ x ≤ 0.3). Chem Mater 16:1996–2006

    Article  Google Scholar 

  9. Armstrong AR, Holzapfel M, Novak P et al (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode LiNi0.2Li0.2Mn0.6O2. J Am Chem Soc 128:8694–8698

    Article  Google Scholar 

  10. Johnson CS, Li NC, Lefief C et al (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1−x)LiMn0.333Ni0.333Co0.333O2(0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106

    Article  Google Scholar 

  11. Lu ZH, Dahn JR (2002) Structure and electrochemistry of layered LiCrxLi(1/3−x3)Mn(2/3−2x/3)O2. J Electrochem Soc 149:A1454–A1459

    Article  Google Scholar 

  12. Kang SH, Kempgens P, Greenbaum S et al (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). J Mater Chem 17:2069–2077

    Article  Google Scholar 

  13. Xiang YH, Yin Z, Zhang YH (2013) Effects of synthesis conditions on the structural and electrochemical properties of the Li-rich material Li[Li0.2Ni0.17Co0.16Mn0.47]O2via the solid-state method. Electrochim Acta 91:214–218

    Article  Google Scholar 

  14. Hao WJ, Zhan HH, Chen H, Wang YH, Tan QQ, Su FB (2014) Solid-state synthesis of Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials for lithium-ion batteries. Particuology 15:18–26

    Article  Google Scholar 

  15. Zhou LZ, Xu QJ, Liu MS, Jin X (2013) Novel solid-state preparation and electrochemical properties of Li1.13[Ni0.2Co0.2Mn0.47]O2 material with a high capacity by acetate precursor for Li-ion batteries. Solid State Ion 249–250:134–138

    Article  Google Scholar 

  16. Son JT, Jeon HJ, Lim JB (2013) Synthesis and electrochemical characterization of Li2MnO3–LiNixCoyMnzO2 cathode for lithium battery using co-precipitation method. Adv Powder Technol 24:270–278

    Article  Google Scholar 

  17. Yuan XL, Xu QJ, Wang C, Liu XN, Liu HM, Xia YY (2015) A facile and novel organic co- precipitation strategy to prepare layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high capacity and excellent cycling stability. J Power Sources 279:157–164

    Article  Google Scholar 

  18. Wang Z, Wu F, Su YF (2012) Synthesis and electrochemical performance of Li[Li0.2Mn0.54–Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries. Acta Phys Chim Sin 28:823–828

    Google Scholar 

  19. West WC, Soler J, Ratnakumar BV (2012) Preparation of high quality layered-layered composite Li2MnO3–LiMO2 (M = Ni, Mn, Co) Li-ion cathodes by a ball milling–annealing process. J Power Sources 204:200–207

    Article  Google Scholar 

  20. Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A823

    Article  Google Scholar 

  21. Zheng JM, Wu XB, Yang Y (2011) A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim Acta 56:3071–3079

    Article  Google Scholar 

  22. Guo XJ, Li YX, Zheng M, Zheng JM, Li J, Gong ZL, Yang Y (2008) Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2·(1−x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) as cathode materials for lithium ion batteries. J Power Sources 184:414–419

    Article  Google Scholar 

  23. Jiao LF, Zhang M, Yuan HT, Zhao M, Guo J, Wang W, Zhou XD, Wang Y (2007) Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2−x/2Mn0.6-x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 167:178–184

    Article  Google Scholar 

  24. Yoon WS, Kim N, Yang XQ, McBreen J, Grey CP (2003) Li-6 MAS NMR and in situ X-ray studies of lithium nickel manganese oxides. J Power Sources 119–121:649–653

    Article  Google Scholar 

  25. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698

    Article  Google Scholar 

  26. Arunkumar TA, Wu Y, Manthiram A (2007) Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2–Li[M]O2 (M = Mn0.5−yNi0.5−yCo2y and Ni1−yCoy) solid solutions. Chem Mater 19:3067–3073

    Article  Google Scholar 

  27. Zheng JM, Zhang ZR, Wu XB (2008) The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J Electrochem Soc 155:A775–A782

    Article  Google Scholar 

  28. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419

    Article  Google Scholar 

  29. Li Z, Du F, Bie XF, Zhang D, Cai YM, Cui XR, Wang CZ, Chen G, Wei YJ (2010) Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. J Phys Chem C 114:22751–22757

    Article  Google Scholar 

  30. Jin X, Xu QJ, Yuan XL, Zhou LZ, Xia YY (2013) Synthesis, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Electrochim Acta 114:605–610

    Article  Google Scholar 

  31. Wang Z, Wu F, Su YF (2012) Synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13–Co0.13]O2 cathode materials for lithium-ion batteries. Acta Phys Chim Sin 28:823–828

    Google Scholar 

  32. Jiang KC, Wu XL, Yin YX (2012) Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. Appl Mater Interfaces 4:4858–4863

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (No. 51474037) and the Innovation Special Project Funds of China Ministry of Science and Technology (No. 2014EG113173).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-yang Xia or Xiao-ming Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Dq., Xia, Cy., Xi, Xm. et al. Sol–gel preparation of Li-rich layered cathode material for lithium ion battery with polymer polyacrylic acid + citric acid chelators. J Sol-Gel Sci Technol 78, 403–410 (2016). https://doi.org/10.1007/s10971-016-3956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3956-9

Keywords

Navigation