Skip to main content
Log in

LSC cathode prepared by polymeric complexation method for proton-conducting SOFC application

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Single-phase, submicron La0.6Sr0.4CoO3−δ (LSC) powder was prepared via a polymeric complexation method at various heating/cooling rates. The optimum powder slurry was used to fabricate LSC/BCZY64/LSC half-cells using BaCe0.54Zr0.36Y0.1O2.95 (BCZY64) as the electrolyte material. The produced powder was characterized by thermal gravimetric analyzer (TGA), X-ray diffractometer (XRD) and scanning electron microscope (SEM) and the half-cell, by electrochemical impedance spectroscopy. TGA results showed that the thermal decomposition temperature (T td) increased as the heating rate increased. The minimum and maximum T td was observed at 600 °C (2 °C min−1) and 750 °C (15 °C min−1), respectively. The XRD results confirmed that a single perovskite phase of LSC formed at heating/cooling rates of 2, 5 and 10 °C min−1 at calcination temperatures of 800, 900 and 1000 °C, respectively. A single perovskite phase of LSC was not observed at a heating/cooling rate of 15 °C min−1. The smallest particle size (130–260 nm) was obtained at 800 °C with a heating/cooling rate of 5 °C min−1, as shown in the SEM micrographs. The area specific resistance of the half-cell was 2.96, 0.97, 0.48 and 0.19 Ω cm2 at 500, 600, 700 and 800 °C, respectively. This result indicates that the prepared LSC cathode has the potential to be used with the BCZY64 electrolyte for an intermediate temperature proton-conducting SOFC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao L, He B, Xun Z, Wang H, Peng R, Meng G, Liu X (2010) Int J Hydrog Energy 35:753–756

    Article  Google Scholar 

  2. Sleiti AK (2010) J Power Sources 195:5719–5725

    Article  Google Scholar 

  3. Tao Y, Shao J, Wang J, Wang WG (2008) J Power Sources 185:609–614

    Article  Google Scholar 

  4. Heel A, Holtappels P, Graule T (2010) J Power Sources 195:6709–6718

    Article  Google Scholar 

  5. Hayd J, Dieterle L, Guntow U, Gerthsen D, Ivers-Tiffée E (2011) J Power Sources 196:7263–7270

    Article  Google Scholar 

  6. Ricote S, Bonanos N, Lenrick F, Wallenberg R (2012) J Power Sources 218:313–319

    Article  Google Scholar 

  7. Ling Y, Yao X, Zhang X, Liu X, Lin B (2012) Int J Hydrog Energy 37:5940–5945

    Article  Google Scholar 

  8. Nian Q, Zhao L, He B, Lin B, Peng R, Meng G, Liu X (2010) J Alloys Compd 492:291–294

    Article  Google Scholar 

  9. Goupil G, Delahaye T, Gauthier G, Sala B, Joud FL (2012) Solid State Ion 209–210:36–42

    Article  Google Scholar 

  10. Tolchard JR, Grande T (2007) Solid State Ion 178:593–599

    Article  Google Scholar 

  11. Ricote S, Bonanos N, Rørvik PM, Haavik C (2012) J Power Sources 209:172–179

    Article  Google Scholar 

  12. Yang L, Liu Z, Wang S, Choi Y, Zuo C, Liu M (2010) J Power Sources 195:471–474

    Article  Google Scholar 

  13. Abdullah NA, Osman N, Hasan S, Hassan OH (2012) Int J Electrochem Sci 7:9401–9409

    Google Scholar 

  14. Shao Z, Zhou W, Zhu Z (2012) Prog Mater Sci 57:804–874

    Article  Google Scholar 

  15. Shao J, Tao Y, Wang J, Xu C, Wang WG (2009) J Alloys Compd 484:263–267

    Article  Google Scholar 

  16. Ge L, Ran R, Shao Z, Zhu ZH, Liu S (2009) Ceram Int 35:2809–2815

    Article  Google Scholar 

  17. Kim JH, Park YM, Kim H (2011) J Power Sources 196:3544–3547

    Article  Google Scholar 

  18. Samat AA, Abdullah NA, Ishak MAM, Osman N (2012) World Acad Sci Eng Technol 70:822–826

    Google Scholar 

  19. Wongmaneerung R, Yimnirun R, Ananta S (2009) Mater Chem Phys 114:569–575

    Article  Google Scholar 

  20. Osman N, Ishak MAM, Samat AA (2013) Chem Mater Res 3:52–61

    Google Scholar 

  21. Samat AA, Safri SA, Samsudin D, Jaafar WS, Osman N (2014) Adv Mater Res 896:175–178

    Article  Google Scholar 

  22. van Doorn RHE, Kruidhof H, Nijmeijer A, Winnubst L, Burggraaf AJ (1998) J Mater Chem 8:2109–2112

    Article  Google Scholar 

  23. Ting-Kuo FG, Chen JG, Wang ZF, Yang HZ, Kumar TP (2004) Mater Chem Phys 87:246–255

    Article  Google Scholar 

  24. Samat AA, Ishak MAM, Hamid HA, Osman N (2013) Adv Mater Res 701:131–135

    Article  Google Scholar 

  25. Wang HW, Hall DA, Sale FR (1994) J Therm Anal 41:605–620

    Article  Google Scholar 

  26. Rasooli A, Boutorabi M, Divandari M, Azarniya A (2013) Bull Mater Sci 36:301–309

    Article  Google Scholar 

  27. Galceran M, Pujol MC, Aguiló M, Díaz F (2007) J Sol–Gel Sci Technol 42:79–88

    Article  Google Scholar 

  28. Shaikh PA, Kolekar YD (2012) J Anal Appl Pyrolysis 93:41–46

    Article  Google Scholar 

  29. Yang ZH, Lin YS (2005) Solid State Ion 176:89–96

    Article  Google Scholar 

  30. Kashif I, Abdelghany A, El-said R (2009) Mater Chem Phys 115:309–312

    Article  Google Scholar 

  31. Durán P, Capel F, Tartaj J, Gutierrez D, Moure C (2001) Solid State Ion 141–142:529–539

    Article  Google Scholar 

  32. Bansal NP, Zhong Z (2006) J Power Sources 158:148–153

    Article  Google Scholar 

  33. Liou YC (2004) Mater Lett 58:944–947

    Article  Google Scholar 

  34. Acuña LM, Peña-Martínez J, Marrero-López D, Fuentes RO, Nuñez P, Lamas DG (2011) J Power Sources 196:9276–9283

    Article  Google Scholar 

  35. Pierre AC (1998) Introduction to sol–gel processing, 1st edn. Kluwer Academic Publishers, London, pp 155–158

    Book  Google Scholar 

  36. Katahira K, Kohchi Y, Shimura T, Iwahara H (2007) Solid State Ion 138:91–98

    Article  Google Scholar 

  37. Zhong Z (2007) Solid State Ion 178:213–220

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Education (MOE) of Malaysia for the Research Acculturation Collaborative Effort (RACE/2012) Grant and Fundamental Research Grant Scheme (FRGS/2014 and FRGS/2/2013/TK06/UKM/02/9). Additionally, the authors acknowledge the financial support given by the Universiti Kebangsaan Malaysia (UKM) via research sponsorships DLP-2014-004. The first author gratefully acknowledges Universiti Malaysia Perlis (UniMAP) and MOE for a PhD scholarship. Facility support from the Center for Research and Instrumentation Management (CRIM) and Fuel Cell Institute of Universiti Kebangsaan Malaysia (UKM) and Universiti Teknologi MARA (UiTM) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafisah Osman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Samat, A., Somalu, M.R., Muchtar, A. et al. LSC cathode prepared by polymeric complexation method for proton-conducting SOFC application. J Sol-Gel Sci Technol 78, 382–393 (2016). https://doi.org/10.1007/s10971-015-3945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3945-4

Keywords

Navigation