Skip to main content
Log in

Role of ionic and nonionic surfactant on the phase formation and morphology of Ba(Ce,Zr)O3 solid solution

  • Original Paper: Fundamentals of sol-gel and hybrid materials processing
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ceramic powder of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) was successfully synthesized via a modified sol–gel method using metal nitrate salts as precursors. The synthesis was accomplished by using three different types of surfactants which are cationic (benzalkonium chloride), anionic (sodium dodecyl sulfate) and a nonionic surfactant (polyoxyethylene (10) oleyl ether). Citric acid and ethylene glycol were used as a chelating and a polymerization agent, respectively. The crystal form and morphology of the powders were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometer and scanning electron microscope (SEM). FTIR spectra showed the traces of carbonate residues in all samples due to the presence of hydrocarbon group in the surfactant structure even after calcination process at T = 1100 °C. Samples prepared using cationic and anionic surfactant consists of the multi-phases compounds which are dominated by BaCO3, BaCeO3, CeO2 and BaZrO3. On the other hand, the samples prepared by using nonionic surfactants produce a single phase of BCZY perovskite-type oxide. SEM images revealed that the sample prepared without surfactant exhibits severe agglomeration. Morphology of the particles for the BCZY prepared by applying the cationic and anionic surfactant was, respectively, cubical and spherical in shape. As for nonionic surfactant, the particle obtained was spherical and uniform in shape. The optimum result was obtained by adding a nonionic surfactant, Brij97, which indicates high crystallinity of the BCZY powder at a temperature of 950 °C and the particle size ranging from 20 to 80 nm. It can be concluded that surfactant affects the phase formation of BCZY ceramic powder as well as its morphology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barison S, Fabrizio M, Fasolin S, Montagner F, Mortalò C (2010) Mater Res Bull 45(9):1171–1176

    Article  Google Scholar 

  2. Iwahara H (1995) Solid State Ion 77:289–298

    Article  Google Scholar 

  3. Yang K, Wang JX, Xue YJ, Wang MS, He CR, Wang Q, Miao H, Wang WG (2014) Ceram Int 40(9):15073–15081

    Article  Google Scholar 

  4. Chakroborty A, Sharma AD, Maiti B, Maiti HS (2002) Mater Lett 57:862–867

    Article  Google Scholar 

  5. Wang S, Zhao F, Zhang L, Chen F (2012) Solid State Ion 213:29–35

    Article  Google Scholar 

  6. Li Y, Zhao J, Wang B (2004) Mater Res Bull 39(3):365–374

    Article  Google Scholar 

  7. Abdullah NA, Hasan S, Osman N (2013) J Chem 2013:1–7

    Google Scholar 

  8. Osman N, Jani AM, Talib IA (2007) Ionics 12(6):379–384

    Article  Google Scholar 

  9. Kobayashi Y, Iizuka Y, Tanase T, Konno M (2005) J Sol-Gel Sci Tech 33:315–321

    Article  Google Scholar 

  10. Emami S, Hosseini HRM, Dolati A (2012) Trans Nonferrous Met Soc China 53(4):308–314

    Google Scholar 

  11. Huang GY, Xu SM, Li LY, Wang XJ (2014) Trans Nonferrous Met Soc China 24:3739–3746

    Article  Google Scholar 

  12. Cioatera N, Pârvulescu V, Su BL (2010) Mater Chem Phys 120(2–3):697–701

    Article  Google Scholar 

  13. Wang YD, Ma CL, Sun XD, Li HD (2002) Inorg Chem Commun 5:751–755

    Article  Google Scholar 

  14. Chandradass J, Kim KH (2009) J Cryst Growth 311(14):3631–3635

    Article  Google Scholar 

  15. Graeve OA, Fathi H, Kelly JP, Saterlie MS, Sinha K, Rojas-George G, Kanakala R, Brown DR, Lopez EA (2013) J Colloid Interf Sci 407:302–309

    Article  Google Scholar 

  16. Wang Y, Wang C, Li C, Cheng Y, Chi F (2014) Ceram Int 40(3):4305–4310

    Article  Google Scholar 

  17. Tao Y, Shao J, Wang J, Wang WG (2009) J Alloy Compd 484(1–2):729–733

    Article  Google Scholar 

  18. Abdullah NA, Osman S, Hasan H, Hassan OH (2012) Int J Electrochem Sc 7:9401–9409

    Google Scholar 

  19. Ejehi F, Marashi SPH, Ghaani MR, Haghshenas DF (2012) Ceram Int 38(8):6857–6863

    Article  Google Scholar 

  20. Motta M, Deimling CV, Saeki MJ, Lisboa-Filho PN (2008) J Sol-Gel Sci Tech 46(2):201–207

    Article  Google Scholar 

  21. Osman N, Talib IA, Hamid HA (2010) Ionics 16(6):561–569

    Article  Google Scholar 

  22. Kuo WK, Lo B, Ling YC (1999) Mater Chem Phys 60(2):132–136

    Article  Google Scholar 

  23. Namnam JS, Philip J (2012) J Colloid Interf Sci 366(1):88–95

    Article  Google Scholar 

  24. Guan H, Bestland E, Zhu C, Zhu H, Albertsdottir D, Hutson J, Simmons T, Ginic-Markovic M, Tao X, Ellis AV (2010) J Hazardous Mater 183:616–621

    Article  Google Scholar 

  25. Khomane RB, Agrawal AC, Kulkarni BD, Gopukumar S, Sivashanmugam A (2008) Mater Res Bull 43(8–9):2497–2503

    Article  Google Scholar 

  26. Abu Bakar SN (2010) Abu Talib I, Osman N. World Appl Sci 9:26–28

    Google Scholar 

  27. Cizauskaite S, Reichlova V, Nenartaviciene G, Beganskiene A, Pinkas J, Kareiva A (2007) Mater Sci 25(3):755–765

    Google Scholar 

  28. Osman N, Talib IA, Hamid HA (2009) Sains Malays 38(3):401–405

    Google Scholar 

  29. Liu Y, Guo Y, Ran R, Shao Z (2013) J Membrane Sci 437:189–195

    Article  Google Scholar 

  30. Robert CL, Ansart F, Castillo S, Richard G (2002) Solid State Sci 4:1053–1059

    Article  Google Scholar 

  31. Kumari L, Li WZ, Kulkarni S, Wu KH, Chen W, Wang C, Vannoy CH, Leblanc RM (2009) Nanoscale Res Lett 5(1):149–157

    Article  Google Scholar 

  32. Lin XF, Zhou RM, Zhang JQ, Sheng XH (2010) Mater Sci 28(2):503–511

    Google Scholar 

  33. Zhang S, Jiang F, Qu G, Lin C (2008) Mater Lett 62(15):2225–2228

    Article  Google Scholar 

  34. Wang M, Gao Y, Dai L, Cao C, Guo X (2012) J Solid State Chem 189:49–56

    Article  Google Scholar 

  35. Wang Z, Li X, Feng Z (2011) Bull Korean Chem Soc 32(4):1310–1314

    Article  Google Scholar 

  36. Rai P, Song MK, Song HM, Kim JH, Kim YS, Lee IH, Yu YT (2012) Ceram Int 38:235–242

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Minister of Higher Education for the Research Grant 600-RMI/RAGS 5/3 (1/2012), Fundamental Research Grant 600-RMI/FRGS 5/3 (8/2014) and Universiti Teknologi MARA (UiTM) for facilities and supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafisah Osman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazlan, N.A., Osman, N., Md Jani, A.M. et al. Role of ionic and nonionic surfactant on the phase formation and morphology of Ba(Ce,Zr)O3 solid solution. J Sol-Gel Sci Technol 78, 50–59 (2016). https://doi.org/10.1007/s10971-015-3938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3938-3

Keywords

Navigation