Skip to main content
Log in

PVP-assisted synthesis of raspberry-like composite particles

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Composite particles composed of SiO2 nanoparticles and polystyrene (PS) spheres with a raspberry-like structure were successfully synthesized by a PVP-assistant sol–gel method. The as-prepared products were systemically characterized by FT-IR, TGA, SEM and TEM. The characterization results indicated that the amount of polyvinyl pyrrolidone (PVP) and concentration of ammonia solution played key roles in tailoring the structure of the composite particles, including size and surface density of SiO2 nanoparticles on the surface of PS spheres. During the PVP-assisted sol–gel process, the synthesized nano-sized SiO2 particles were favorably deposited on the surface of PS spheres to form hierarchical composite particles. By adjusting the amount of PVP and pH value of reaction system, the typical raspberry-like particles with controllable coverage of SiO2 nanoparticles on PS spheres were obtained. Subsequently, the composite particles with well controllable morphology were modified with OcTMS and orderly deposited on the substrate. The effect of the composite particles with different morphologies on the wetting property was investigated. Finally, superhydrophobic surface was generated and the water contact angle was up to 154°.

Graphical Abstract

PS–SiO2 composite particles with hierarchical structure were successfully prepared by a PVP-assisted sol–gel method, which exhibited a superhydrophobic property after surface modification with OcTMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang D, Salgueirino-Maceira V, Liz-Marzan L, Caruso F (2002) Gold-silica inverse opals by colloidal crystal templating. Adv Mater 14:908

    Article  Google Scholar 

  2. Correa-Duarte M, Sobal N, Liz-Marzan L, Giersig M (2004) Linear assemblies of silica-coated gold nanoparticles using carbon nanotubes as templates. Adv Mater 16:2179

    Article  Google Scholar 

  3. Ming W, Wu D, Benthem R, With G (2005) Superhydrophobic films from raspberry-like particles. Nano Lett 5:2298

    Article  Google Scholar 

  4. Qian Z, Zhang Z, Song L, Liu H (2009) A novel approach to raspberry-like particles for superhydrophobic materials. J Mater Chem 19:1297

    Article  Google Scholar 

  5. Puretskiy N, Ionov L (2011) Synthesis of robust raspberry-like particles using polymer brushes. Langmuir 27:3006

    Article  Google Scholar 

  6. Du X, Liu X, Chen H, He J (2009) Facile fabrication of raspberry-like composite nanoparticles and their application as building blocks for constructing superhydrophilic coatings. J Phys Chem C 113:9063

    Article  Google Scholar 

  7. Peng B, Tan L, Chen D, Meng X, Tang F (2012) Programming surface morphology of TiO2 hollow spheres and their superhydrophilic films. ACS Appl Mater Interfaces 4:96

    Article  Google Scholar 

  8. Sanles-Sobrido M, Exner W, Rodriguez-Lorenzo L, Rodriguez-Gonzalez B, Correa-Duarte M, Alvarez-Puebla R, Liz-Marzan L (2009) Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J Am Chem Soc 131:2699

    Article  Google Scholar 

  9. Li J, Ma W, Wei C, You L, Guo J, Hu J, Wang C (2011) Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly(styrene-co-acrylic acid) nanospheres as novel active substrates. Langmuir 27:14539

    Article  Google Scholar 

  10. Akagi T, Baba M, Akashi M (2007) Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer 48:6729

    Article  Google Scholar 

  11. Liu S, Wong Y, Wang Y, Wang D, Han M (2007) Controlled release and absorption resonance of fluorescent silica-coated platinum nanoparticles. Adv Funct Mater 17:3147

    Article  Google Scholar 

  12. Shimoda A, Sawada S, Kano A, Maruyama A, Moquin A, Winnik F, Akiyoshi K (2012) Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery. Colloids Surf B 99:38

    Article  Google Scholar 

  13. Omer-Mizrahi M, Margel S (2009) Synthesis and characterization of magnetic and non-magnetic core–shell polyepoxide micrometer-sized particles of narrow size distribution. J Colloid Interface Sci 329:228

    Article  Google Scholar 

  14. Bai B, Quici N, Li Z, Puma G (2011) Novel one step fabrication of raspberry-like TiO2@yeast hybrid microspheres via electrostatic-interaction-driven self-assembled heterocoagulation for environmental applications. Chem Eng J 170:451

    Article  Google Scholar 

  15. Hu J, Chen M, Fang X, Wu L (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40:5472

    Article  Google Scholar 

  16. Tzounis L, Contreras-Caceres R, Schellkopf L, Jehnichen D, Fischer D, Cai C, Uhlmann P, Stamm M (2014) Controlled growth of Ag nanoparticles decorated onto the surface of SiO2 spheres: a nanohybrid system with combined SERS and catalytic properties. RSC Adv 4:17846

    Article  Google Scholar 

  17. Lu Y, McLellan J, Xia Y (2004) Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. Langmuir 20:3464

    Article  Google Scholar 

  18. San-Miguel A, Behrens S (2012) Influence of nanoscale particle roughness on the stability of pickering emulsions. Langmuir 28:12038

    Article  Google Scholar 

  19. Dechezelles J, Malik V, Crassous J, Schurtenberger P (2013) Hybrid raspberry microgels with tunable thermoresponsive behavior. Soft Matter 9:2798

    Article  Google Scholar 

  20. Agrawal M, Pich A, Zafeiropoulos N, Gupta S, Pionteck J, Simon F, Stamm M (2007) Polystyrene-ZnO composite particles with controlled morphology. Chem Mater 19:1845

    Article  Google Scholar 

  21. Sun Y, Yin Y, Chen M, Zhou S, Wu L (2013) One-step facile synthesis of monodisperse raspberry-like P(S-MPS-AA) colloidal particles. Polym Chem 4:3020

    Article  Google Scholar 

  22. Kanahara M, Shimomura M, Yabu H (2014) Fabrication of gold nanoparticle–polymer composite particles with raspberry, core–shell and amorphous morphologies at room temperature via electrostatic interactions and diffusion. Soft Matter 10:275

    Article  Google Scholar 

  23. Huang H, Liu H (2010) Synthesis of the raspberry-like PS/PAN particles with anisotropic properties via seeded emulsion polymerization initiated by γ-ray radiation. J Polym Sci Part A Polym Chem 48:5198

    Article  Google Scholar 

  24. Fan X, Jia X, Zhang H, Zhang B, Li C, Zhang Q (2013) Synthesis of raspberry-like poly(styrene-glycidyl methacrylate) particles via a one-step soap-free emulsion polymerization process accompanied by phase separation. Langmuir 29:11730

    Article  Google Scholar 

  25. D’Acunzi M, Mammen L, Singh M, Deng X, Roth M, Auernhammer G, Butt H, Vollmer D (2010) Superhydrophobic surfaces by hybrid raspberry-like particles. Faraday Discuss 146:35

    Article  Google Scholar 

  26. Agrawal M, Pich A, Gupta S, Zafeiropoulos N, Formanek P, Jehnichen D, Stamm M (2010) Tailored growth of In(OH)3 shell on functionalized polystyrene beads. Langmuir 26:526

    Article  Google Scholar 

  27. Kraft D, Hilhorst J, Heinen M, Hoogenraad M, Luigjes B, Kegel W (2011) Patchy polymer colloids with tunable anisotropy dimensions. J Phys Chem B 115:7175

    Article  Google Scholar 

  28. Xu S, Ma W, You L, Li J, Guo J, Hu J, Wang C (2012) Toward designer magnetite/polystyrene colloidal composite microspheres with controllable nanostructures and desirable surface functionalities. Langmuir 28:3271

    Article  Google Scholar 

  29. Kang B, Schrade A, Xu Y, Chan Y, Ziener U (2012) Synthesis and characterization of dually labeled pickering-type stabilized polymer nanoparticles in a downscaled miniemulsion system. Langmuir 28:9347

    Article  Google Scholar 

  30. ZhangvX Ren Y, Chen M, Wu L (2011) Fabrication of polystyrene/upconversion nanocrystals nanocomposite spheres through in situ dispersion polymerization original. J Colloid Interface Sci 358:347

    Article  Google Scholar 

  31. Schrade A, Cao Z, Landfester K, Ziener U (2011) Preparation of raspberry-like nanocapsules by the combination of pickering emulsification and solvent displacement technique. Langmuir 27:6689

    Article  Google Scholar 

  32. Li R, Yang X, Li G, Li S, Huang W (2006) Core-corona polymer composite particles by self-assembled heterocoagulation based on a hydrogen-bonding interaction. Langmuir 22:8127

    Article  Google Scholar 

  33. Zhao B, Collinson M (2010) Well-defined hierarchical templates for multimodal porous material fabrication. Chem Mater 22:4312

    Article  Google Scholar 

  34. Guo S, Dong S, Wang E (2009) Raspberry-like hierarchical Au/Pt nanoparticle assembling hollow spheres with nanochannels: an advanced nanoelectrocatalyst for the oxygen reduction reaction. J Phys Chem C 113:5485

    Article  Google Scholar 

  35. Xu D, Wang M, Ge X, Lam M, Ge X (2012) Fabrication of raspberry SiO2/polystyrene particles and superhydrophobic particulate film with high adhesive force. J Mater Chem 22:5784

    Article  Google Scholar 

  36. Wu Y, Zhang Y, Xu J, Chen M, Wu L (2010) One-step preparation of PS/TiO2 nanocomposite particles via miniemulsion polymerization. J Colloid Interface Sci 343:18

    Article  Google Scholar 

  37. Minami H, Mizuta Y, Suzuki T (2013) Preparation of raspberry-like polymer particles by a heterocoagulation technique utilizing hydrogen bonding interactions between steric stabilizers. Langmuir 29:554

    Article  Google Scholar 

  38. Graf C, Vossen D, Imhof A, Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693

    Article  Google Scholar 

  39. Lee J, Chen D, Li X, Yoo S, Bottomley L, El-Sayed M, Park S, Liu M (2013) Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering. Nanoscale 5:11620

    Article  Google Scholar 

  40. Wang K, Zhang X, Niu C, Wang Y (2014) Template-activated strategy toward one-step coating silica colloidal microspheres with sliver. ACS Appl Mater Interfaces 6:1272

    Article  Google Scholar 

  41. Xiao Z, Wang A, Kim D (2010) 3D macroporous SiCN ceramic patterns tailored by thermally-induced deformation of template. J Mater Chem 20:2853

    Article  Google Scholar 

  42. Fujita N, Asai M, Yamashita T, Shinkai S (2004) Sol–gel transcription of silica-based hybrid nanostructures using poly(N-vinylpyrrolidone)-coated [60]fullerene, single-walled carbon nanotube and block copolymer templates. J Mater Chem 14:2106

    Article  Google Scholar 

  43. Lu Y, McLellan J, Xia Y (2004) Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. Langmuir 20:3464

    Article  Google Scholar 

  44. Liu S, Han M (2010) Silica-coated metal nanoparticles. Chem Asian J 5:36

    Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (21446001) and the Program for Liaoning Innovative Research Team in University (LT2013012) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuo-Yi Xiao or Qing-Da An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Xiao, ZY., Zhai, SR. et al. PVP-assisted synthesis of raspberry-like composite particles. J Sol-Gel Sci Technol 78, 228–238 (2016). https://doi.org/10.1007/s10971-015-3932-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3932-9

Keywords

Navigation