Skip to main content
Log in

Synthesis, characterization and catalytic properties of La(Ni,Fe)O3–NiO nanocomposites

  • Original Paper: Characterization Methods of Sol-Gel and Hybrid Materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocomposite structures involving LaNiO3 perovskite partially substituted with iron and segregated NiO are synthesized by sol–gel method using citric acid as chelating agent. Thermogravimetric and differential thermal analysis and X-ray diffraction (XRD) techniques are used to explore precursor decomposition and to establish adequate calcination temperature for the preparation of the nanocomposites. The samples obtained after calcination at 750 °C were characterized by XRD, X-ray photoelectronic spectroscopy, Brunauer–Emmett–Teller surface area analysis, Fourier transform infrared spectroscopy and powder size distribution, and tested for the catalytic oxidation reaction of CO. Optimum catalytic properties are shown to be achieved for nanocomposites with relatively weak Fe/Ni substitution degree in the perovskite interacting with well-dispersed small NiO entities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lacorre P, Torrance JB, Pannetier J, Nazzal AI, Wang PW, Huang TC (1991) Synthesis, crystal structure, and properties of metallic PrNiO3: comparison with metallic NdNiO3 and semiconducting SmNiO3. Solid State Chem 91(2):225–237

    Article  Google Scholar 

  2. Chen MS, Wu TB, Wu JM (1996) Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films. Appl Phys Lett 68(10):1430–1432

    Article  Google Scholar 

  3. Singh RN, Tiwari SK, Singh SP, Jain AN, Singh NK (1997) Electrocatalytic activity of high specific surface area perovskite-type LaNiO3 via sol–gel route for electrolytic oxygen evolution in alkaline solution. Int J Hydrogen Energy 22(6):557–562

    Article  Google Scholar 

  4. Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101(7):1981–2018

    Article  Google Scholar 

  5. Ling TR, Chen ZB, Lee MD (1996) Catalytic behavior and electrical conductivity of LaNiO3 in ethanol oxidation. Appl Catal A 136(2):191–203

    Article  Google Scholar 

  6. Burselle M, Pirjamali M, Kiros Y (2002) La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes. Electrochim Acta 47(10):1651–1660

    Article  Google Scholar 

  7. Lima SM, Assaf JM, Peña MA, Fierro JLG (2006) Structural features of La1−x Ce x NiO3 mixed oxides and performance for the dry reforming of methane. Appl Catal A 311:94–104

    Article  Google Scholar 

  8. Valderrama G, Kiennemann A, Goldwasser MR (2008) Dry reforming of CH4 over solid solutions of LaNi1−x CoxO3. Catal Today 133:142–148

    Article  Google Scholar 

  9. Valderrama G, Goldwasser MR, De Navarro CU, Tatibouët JM, Barrault J, Batiot-Dupeyrat C, Martínez F (2005) Dry reforming of methane over Ni perovskite type oxides. Catal Today 107:785–791

    Article  Google Scholar 

  10. De Lima SM, Da Silva AM, Da Costa LOO, Assaf JM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2010) Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Appl Catal A 377(1–2):181–190

    Article  Google Scholar 

  11. Pereñiguez R, Gonzalez-delaCruz VM, Caballero A, Holgado JP (2012) LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: effect of the presence of an amorphous NiO phase. Appl Catal B 123:324–332

    Article  Google Scholar 

  12. Norman AK, Morris MA (1999) The preparation of the single-phase perovskite LaNiO3. Mater Proc Technol 92:91–96

    Article  Google Scholar 

  13. Russo N, Fino D, Saracco G, Specchia V (2008) Promotion effect of Au on perovskite catalysts for the regeneration of diesel particulate filters. Catal Today 137(2):306–311

    Article  Google Scholar 

  14. Rida K, Pena MA, Sastre E, Martinez-Arias A (2012) Effect of calcination temperature on structural properties and catalytic activity in oxidation reactions of LaNiO3 perovskite prepared by Pechini method. J Rare Earths 30(3):210–216

    Article  Google Scholar 

  15. Pecchi G, Reyes P, Zamora R, Cadús LE, Fierro JLG (2008) Surface properties and performance for VOCs combustion of LaFe1−y Ni y O3 perovskite oxides. Solid State Chem 181(4):905–912

    Article  Google Scholar 

  16. De la Cruz RG, Falcón H, Peña MA, Fierro JLG (2001) Role of bulk and surface structures of La1−x Sr x NiO3 perovskite-type oxides in methane combustion. Appl Catal B 33(1):45–55

    Article  Google Scholar 

  17. Cheng J, Navrotsky A, Zhou XD, Anderson HU (2005) Enthalpies of formation of LaMO3 perovskites (M = Cr, Fe Co, and Ni). Mater Res 20(1):191–200

    Article  Google Scholar 

  18. Le NTH, Calderón-Moreno JM, Popa M, Crespo D, Phuc NX (2006) LaNiO3 nanopowder prepared by an ‘amorphous citrate’ route. Eur Ceram Soc 26(4):403–407

    Article  Google Scholar 

  19. Merino NA, Barbero BP, Grange P, Cadús LE (2005) La1−x Ca x CoO3 perovskite-type oxides: preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane. J Catal 231(1):232–244

    Article  Google Scholar 

  20. Yarbay RZ, Figen HE, Baykara SZ (2012) Effects of cobalt and nickel substitution on physical properties of perovskite type oxides prepared by the sol–gel citrate method. Acta Phys Pol A 1(121):44–46

    Article  Google Scholar 

  21. Venezia AM (2003) X-ray photoelectron spectroscopy (XPS) for catalysts characterization. Catal Today 77(4):359–370

    Article  Google Scholar 

  22. Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymon RH, Gale LH (1981) Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal 3(5):211–225

    Article  Google Scholar 

  23. Lebid M, Omari M (2014) Synthesis and electrochemical properties of LaFeO3 oxides prepared via sol–gel method. Arab J Sci Eng 39(1):147–152

    Article  Google Scholar 

  24. Devi PS, Rao MS (1992) Study of the thermal decomposition of lanthanum and chromium citrate hydrates. Anal Appl Pyrol 22(3):187–195

    Article  Google Scholar 

  25. Wang H, Zhu Y, Liu P, Yao W (2003) Preparation of nanosized perovskite LaNiO3 powder via amorphous heteronuclear complex precursor. J Mater Sci 38(9):1939–1943

    Article  Google Scholar 

  26. Tejuca LG, Fierro JLG (1989) XPS and TPD probe techniques for the study of LaNiO3 perovskite oxide. Therm Acta 147(2):361–375

    Article  Google Scholar 

  27. Provendier H, Petit C, Kiennemann A (2000) Catalytic behavior of Ni containing catalysts in vaporeforming of methane with low H2O/CH4 ratio and free carbon deposition. Stud Surf Sci Catal 130:683–888

    Article  Google Scholar 

  28. Clemens O, Berry FJ, Wright AJ, Knight KS, Perez-Mato JM, Igartua JM, Slater PR (2013) A neutron diffraction study and mode analysis of compounds of the system La1−x Sr x FeO3 (x = 1, 0.8, 0.5, 0.2) and an investigation of their magnetic properties. J Solid State Chem 206:158–169

    Article  Google Scholar 

  29. Gonçalves NS, Carvalho JA, Lima ZM, Sasaki JM (2012) Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater Lett 72:36–38

    Article  Google Scholar 

  30. Lavat AE, Baran EJ (2003) IR-spectroscopic characterization of A2BB′O6 perovskites. Vib Spectrosc 32(2):167–174

    Article  Google Scholar 

  31. Barbero BP, Gamboa JA, Cadús LE (2006) Synthesis and characterization of La1−x Ca x FeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Appl Catal B 65(1):21–30

    Article  Google Scholar 

  32. Rao GV, Rao CNR, Ferraro JR (1970) Infrared and electronic spectra of rare earth perovskites: ortho-chromites, -manganites and -ferrites. Appl Spectrosc 24(4):436–445

    Article  Google Scholar 

  33. Uwamino Y, Ishizuka T, Yamatera H (1984) X-ray photoelectron spectroscopy of rare-earth compounds. Electron Spectrosc Rel Phenom 34(1):67–78

    Article  Google Scholar 

  34. Rida K, Benabbas A, Bouremmad F, Peña MA, Martínez-Arias A (2006) Surface properties and catalytic performance of La1−x Sr x CrO3 perovskite-type oxides for CO and C3H6 combustion. Catal Commun 7(12):963–968

    Article  Google Scholar 

  35. Damyanova S, Daza L, Fierro JLG (1996) Surface and catalytic properties of lanthanum-promoted Ni/sepiolite catalysts for styrene hydrogenation. J Catal 159(1):150–161

    Article  Google Scholar 

  36. Cho YG, Choi KH, Kim RY, Jung JS, Lee SH (2009) Characterization and catalytic properties of surface La-rich LaFeO3 perovskite. Bull Korean Chem Soc 30(6):1368–1372

    Article  Google Scholar 

  37. Parida KM, Reddy KH, Martha S, Das DP, Biswal N (2010) Fabrication of nanocrystalline LaFeO3: an efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int J Hydrogen Energy 35(22):12161–12168

    Article  Google Scholar 

  38. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36(12):1564–1574

    Article  Google Scholar 

  39. Kirchnerova J, Alifanti M, Delmon B (2002) Evidence of phase cooperation in the LaCoO3–CeO2–Co3O4 catalytic system in relation to activity in methane combustion. Appl Catal A 231(1):65–80

    Article  Google Scholar 

  40. Rida K, Benabbas A, Bouremmad F, Peña MA, Sastre E, Martínez-Arias A (2007) Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol–gel derived lanthanum chromite perovskite. Appl Catal A 327(2):173–179

    Article  Google Scholar 

  41. Wang CT, Ro SH (2005) Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation. Appl Catal A 285(1):196–204

    Article  Google Scholar 

  42. Fernández-García M, Martínez-Arias A, Hanson JC, Rodriguez JA (2004) Nanostructured oxides in chemistry: characterization and properties. Chem Rev 104(9):4063–4104

    Article  Google Scholar 

  43. Kubacka A, Martínez-Arias A, Fernández-García M (2015) Role of the interface in base-metal ceria-based catalysts for hydrogen purification and production processes. ChemCatChem. doi:10.1002/cctc.201500593

    Google Scholar 

Download references

Acknowledgments

Faiçal Djani thanks the Algerian government and the Ministry of Higher Education and Scientific Research of Algeria for a grant under which part of this work was performed. Thanks are due to ICP–CSIC Unidad de Análisis Térmico and Unidad de Apoyo Services for performing TGA–DTA, XRD, XPS and S BET measurements. Financial support by Spanish MINECO (Plan Nacional Project CTQ2012-32928) is greatly acknowledged. Support (to A. M.-A.) from EU COST CM1104 action is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Djani or A. Martínez-Arias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djani, F., Omari, M. & Martínez-Arias, A. Synthesis, characterization and catalytic properties of La(Ni,Fe)O3–NiO nanocomposites. J Sol-Gel Sci Technol 78, 1–10 (2016). https://doi.org/10.1007/s10971-015-3929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3929-4

Keywords

Navigation