Skip to main content
Log in

Controllable morphology and pore structure of micron-sized organic–inorganic hybrid silica spheres derived from silsesquioxane

  • Original Paper: Fundamentals of Sol-Gel and Hybrid Materials Processing
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous organic–inorganic hybrid silica with ethylidene bridging group between two silicon atoms was prepared via a sol–gel and hydrothermal synthesis process by using silsesquioxane (1,2-bis(triethoxysilyl) ethane, BTESE) as silicon source and triblock copolymer poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) (P123) in combination with dodecyltrimethylammonium bromide (DTAB) as template. Factors that affect the morphology and pore structure of silica particles were investigated in detail by means of scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption. The results show that the sphericity and surface smoothness of organic–inorganic hybrid silica are distinctly enhanced with increasing amount of DTAB and hydrochloric acid. Meanwhile, suitable synthesis time and crystallization temperature are beneficial to the formation of silica spheres with improved sphericity. The organic–inorganic hybrid silica spheres prepared with a DTAB/BTESE molar ratio of 0.8, a HCl/BTESE molar ratio of 6, an aging time of 24 h and a crystallization temperature of 100 °C exhibit a particle size of around 1.7 µm, a high surface area of 1063.35 m2 g−1 and a narrow pore size distribution centered at 3.12 nm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fiorilli S, Tallia F, Pontiroli L, Vitale-Brovarone C, Onida B (2013) Spay-dried mesoporous silica spheres functionalized with carboxylic groups. Mater Lett 108:118–121

    Article  Google Scholar 

  2. Mandal M, Manchanda AS, Zhuang JQ, Kruk M (2012) Face-centered-cubic large-pore periodic mesoporous organosilicas with unsaturated and aromatic bridging groups. Langmuir 28:8737–8745

    Article  Google Scholar 

  3. Ying JY, Mehnert CP, Wong MS (1999) Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed 38:56–77

    Article  Google Scholar 

  4. Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv Mater 12:1403–1419

    Article  Google Scholar 

  5. Sayari A, Hamoudi S (2001) Periodic mesoporous silica-based organic–inorganic nanocomposite materials. Chem Mater 13:3151–3168

    Article  Google Scholar 

  6. Lin HP, Mou CY (2002) Structural and morphological control of cationic surfactant-templated mesoporous silica. Acc Chem Res 35:927–935

    Article  Google Scholar 

  7. Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  8. Schüth F, Schmidt W, Zibrowius B, Galeano C (2014) Highly microporous monodisperse silica spheres synthesized by the Stöber process. Microporous Mesoporous Mater 200:317–325

    Article  Google Scholar 

  9. Wang ZS, Chen LY, Li MF, Cheng XB, Sang T, Shen ZX, Wang XD (2010) Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci 341:23–29

    Article  Google Scholar 

  10. Zhao XJ, Cheng B, Yu JG, Zhao L (2003) Preparation and formation mechanisms of monodispersed silicon dioxide spherical particles. Acta Chim Sin 61:562–566

    Google Scholar 

  11. Van Der Voort P, Sandra P, Lynen F, Van Driessche I, Wallaert E, Ide M (2011) Spherical mesoporous silica particles by spray drying: doubling the retention factor of HPLC columns. Microporous Mesoporous Mater 142:282–291

    Article  Google Scholar 

  12. Muylaert I, Van Der Voort P (2009) Supported vanadium oxide in heterogeneous catalysis: elucidating the structure-activity relationship with spectroscopy. Phys Chem Chem Phys 11:2826–2832

    Article  Google Scholar 

  13. Hudson MJ, Knowles JP, Harris PJF, Jackson DB, Chinn MJ, Ward JL (2004) The trapping and decomposition of toxic gases such as hydrogen cyanide using modified mesoporous silicates. Microporous Mesoporous Mater 75:121–128

    Article  Google Scholar 

  14. De Canck E, Lapeire L, De Clercq J, Verpoort F, Van Der Voort P (2010) New ultrastable mesoporous adsorbent for the removal of mercury ions. Langmuir 26:10076–10083

    Article  Google Scholar 

  15. Van Der Voort P, Vercaemst C, Schaubroeck D, Verpoort F (2008) Ordered mesoporous materials at the beginning of the third millennium: new strategies to create hybrid and non-siliceous variants. Phys Chem Chem Phys 10:347–360

    Article  Google Scholar 

  16. Zhao DY, Sun JY, Li QZ, Stucky GD (2000) Morphological control of highly ordered mesoporous silica SBA-15. Chem Mater 12:275–279

    Article  Google Scholar 

  17. Zhao JW, Gao F, Fu YL, Jin W, Yang PD, Zhao DY (2002) Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography. Chem Commun 7:752–753

    Article  Google Scholar 

  18. Feng G, Zhao JW, Zhang S, Zhou F, Jin W, Zhang XM, Yang PY, Zhao DY (2002) Application of C18-modified mseoporous SBA-15 as the substrate for high performance liquid chromatography. Chem J Chin Univ 23:1494–1497

    Google Scholar 

  19. Stucky GD, Chmelka BF, Zhao DY, Yang PD (1998) Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem Mater 10:2033–2036

    Article  Google Scholar 

  20. Xia YD, Mokaya R (2005) High surface area ethylene-bridged mesoporous and supermicroporous organosilica spheres. Microporous Mesoporous Mater 86:231–242

    Article  Google Scholar 

  21. Mokaya R, Xia YD, Yang ZX (2006) Molecularly ordered ethylene-bridged periodic mesoporous organosilica spheres with tunable micrometer sizes. Chem Mater 18:1141–1148

    Article  Google Scholar 

  22. Mokaya R, Xia Y (2006) Surfactant mediated control of pore size and morphology for molecularly ordered ethylene-bridged periodic mesoporous organosilica. J Phys Chem B 110:3889–3894

    Article  Google Scholar 

  23. Lu GQ, Yu CZ, Wang LZ, Qiao SZ, Zhou XF, Dioioputro H (2006) Periodic mesoporous organosilica hollow spheres with tunable wall thickness. J Am Chem Soc 128:6320–6321

    Article  Google Scholar 

  24. Allen T (1980) Particle size measurement, 4th edn. Chapman and Hall, London

    Google Scholar 

  25. Hanrahan JP, Donovan A, Morris MA, Holmes JD (2007) Synthesis and swelling of large pore diameter mesoporous silica spheres. J Mater Chem A 17:3881–3887

    Article  Google Scholar 

  26. Ma Y, Qi LM, Ma JM, Wu YQ, Liu Q, Cheng HM (2003) Large-pore mesoporous silica spheres: synthesis and application in HPLC. Colloids Surf A Physicochem Eng Asp 229:1–8

    Article  Google Scholar 

  27. Wang L, Qi T, Zhang Y, Chu JL (2006) Morphosynthesis route to large-pore SBA-15 microspheres. Microporous Mesoporous Mater 91:156–160

    Article  Google Scholar 

  28. Shi EW (2004) Hydrothermal crystallography, 8th edn. Science Press, Beijing

    Google Scholar 

  29. Zhao DY, Huo QS, Feng JL, Chmelka BF, Galen D (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  Google Scholar 

  30. Lin CY, Qiu Y, Jiang LQ (2000) Micellar structure of pluronic F127 and P123 triblock copolymers. J Fuzhou Univ (Nat Sci) 28:77–81

    Google Scholar 

  31. Huo Q, Margolese DL, Ciesla U, Feng PY, Gier TE, Sieger P, Leon R, Petroff PM, Schüth F, Stucky GD (1994) Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368:317–321

    Article  Google Scholar 

  32. Huo Q, Margolese DL, Ciesla U, Feng PY, Gier TE, Sieger P, Leon R, Petroff PM, Schüth F, Stucky GD (1994) Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater 6:1176–1191

    Article  Google Scholar 

  33. Zhou LH, Zhang LZ, Liu HL (2006) Effect of crystallization temperature on structure and morphology of mesoporous SBA-15. Chin J Process Eng 6:499–502

    Google Scholar 

  34. Wang HJ, Guo YP, Lang WZ, Guo YJ (2009) Effect of different crystallization temperature on the crystalline structure and morphology of zeolite ZSM-5. GuangZhou Chem Ind 37:89–92

    Google Scholar 

Download references

Acknowledgments

This research is financially supported by National Natural Science Foundation of China (Grant Nos. 21171014, 50502002 and 51402007), Scientific Research Common Program of the Beijing Municipal Commission of Education (Grant Nos. KZ201410005006 and KM201210005012), State Key Laboratory of Solid Waste Reuse for Building Materials (Grant No. SWR-2014-010), Beijing Natural Science Foundation of China (Grant No. 2141001) and Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Wei or Zuo-Ren Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, DD., Wei, Q., Cui, SP. et al. Controllable morphology and pore structure of micron-sized organic–inorganic hybrid silica spheres derived from silsesquioxane. J Sol-Gel Sci Technol 78, 40–49 (2016). https://doi.org/10.1007/s10971-015-3926-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3926-7

Keywords

Navigation