Skip to main content
Log in

Electrospinning of C-doped ZnO nanofibers with high visible-light photocatalytic activity

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, C-doped ZnO nanofibers were successfully fabricated by electrospinning the precursor solution consisting of polyacrylonitrile and zinc acetate composite through a facile single capillary, followed by thermal decomposition of the precursor fibers. The as-prepared nanofibers were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, resonant Raman spectra, thermal gravimetric and differential thermal analysis, and Fourier transform infrared spectroscopy spectra, respectively. The results indicated that C-doped ZnO nanofibers were fabricated when the calcination temperature of the precursor fibers reached to 450 °C. Photocatalytic tests displayed that the C-doped ZnO nanofibers possessed a much higher degradation rate of rhodamine B than the pure ZnO nanofibers under visible light. The enhanced photocatalytic activity could be attributed to the formation of the new energy states because of the carbon doping, which might reduce band gap of the ZnO. Moreover, the C-doped ZnO nanofibers could be easily recycled without the decrease in the photocatalytic activity due to their one-dimensional nanostructural property. And the self-doped and photocatalysis mechanisms of C-doped ZnO nanofibers have been discussed.

Graphical Abstract

C-doped ZnO nanofibers with high visible-light photocatalytic activity were fabricated by combining the electrospinning technique and thermal decomposition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kochuveedu ST, Jang YH, Kim DH (2013) Chem Soc Rev 42:8467–8493

    Article  Google Scholar 

  2. Zhang L, Fu H, Zhu Y (2008) Adv Funct Mater 18:2180–2189

    Article  Google Scholar 

  3. Wu W, Jiang C, Roy VAL (2015) Nanoscale 7:38–58

    Google Scholar 

  4. Raza W, Haque MM, Muneer M, Fleisch M, Hakki A, Bahnemann D (2015) J Alloy Compd 632:837–844

    Article  Google Scholar 

  5. Mu J, Shao C, Guo Z, Zhang Z, Zhang M, Zhang P, Chen B, Liu Y, Appl ACS (2011) Mater Interfaces 3:590–596

    Article  Google Scholar 

  6. Smith YR, Kar A, Subramanian VR (2009) Ind Eng Chem Res 48:10268–10276

    Article  Google Scholar 

  7. Gallino F, Di Valentin C, Pacchioni G, Chiesa M, Giamello E (2010) J Mater Chem 20:689–697

    Article  Google Scholar 

  8. Wang L, Nie Z, Cao C, Ji M, Zhou L, Feng X (2015) J Mater Chem A 3:3710–3718

    Article  Google Scholar 

  9. Yu J, Zhang L, Cheng B, Su Y (2007) J Phys Chem C 111:10582–10589

    Article  Google Scholar 

  10. Ida S, Kim N, Ertekin E, Takenaka S, Ishihara T (2015) J Am Chem Soc 137:239–244

    Article  Google Scholar 

  11. Yeber MC, Rodrĺguez J, Freer J, Durán N, Mansilla HD (2000) Chemosphere 41:1193–1197

    Article  Google Scholar 

  12. Khodja A, Sehili T, Pilichowski J, Boule P (2001) Photochem Photobiol A 141:231–239

    Article  Google Scholar 

  13. Ye C, Bando Y, Shen G, Golberg D (2006) J Phys Chem B 110:15146–15151

    Article  Google Scholar 

  14. Cao B, Cai W (2008) J Phys Chem C 112:680–685

    Article  Google Scholar 

  15. Muhich CL, Westcott JY IV, Fuerst T, Weimer AW, Musgrave CB (2014) J Phys Chem C 118:27415–27427

    Article  Google Scholar 

  16. Uddin MT, Nicolas Y, Olivier C, Servant L, Toupance T, Li S, Klein A, Jaegermann W (2015) Phys Chem Chem Phys 17:5090–5102

    Article  Google Scholar 

  17. Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nano Lett 9:2331–2336

    Article  Google Scholar 

  18. Cho S, Jang J, Lee JS, Lee K (2010) CrystEngComm 12:3929–3935

    Article  Google Scholar 

  19. Liu S, Li C, Yu J, Xiang Q (2011) CrystEngComm 13:2533–2541

    Article  Google Scholar 

  20. Wang Y, Wang F, He J (2013) Nanoscale 5:11291–11297

    Article  Google Scholar 

  21. Kayaci F, Ozgit-Akgun C, Donmez I, Biyikli N, Uyar T, Appl ACS (2012) Mater Interfaces 4:6185–6194

    Article  Google Scholar 

  22. Wang C, Shao C, Wang L, Zhang L, Li X, Liu Y (2009) J Colloid Interface Sci 333:242–248

    Article  Google Scholar 

  23. Zhang Z, Shao C, Li X, Wang C, Zhang M, Liu Y (2010) ACS Appl. Mater. Interfaces 2:2915–2923

    Article  Google Scholar 

  24. Zhang Z, Shao C, Zhang L, Li X, Liu Y (2010) J Colloid Interface Sci 351:57–62

    Article  Google Scholar 

  25. Shen Y (2015) J Mater Chem A 3:13114–13188

    Article  Google Scholar 

  26. Li D, Chen Y, Wang H, Qiu X, Alshameri A, Ma Y, Liu Y, Yan C (2014) J Taiwan Inst Chem Eng 45:2742–2748

    Article  Google Scholar 

  27. Liu D, Yuan P, Tan D, Liu H, Wang T, Fan M, Zhu J, He H (2011) J Colloid Interface Sci 388:176–184

    Article  Google Scholar 

  28. Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y (2010) ACS Nano 4:6425–6432

    Article  Google Scholar 

  29. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Nano Lett 10:751–758

    Article  Google Scholar 

  30. Zhang WX, Cui JC, Tao CA, Wu YG, Li ZP, Ma L, Wen YQ, Li GT (2009) Angew Chem Int Ed 48:5864–5868

    Article  Google Scholar 

  31. Lu J, Yang JX, Wang J, Lim A, Wang S, Loh KP (2009) ACS Nano 3:2367–2375

    Article  Google Scholar 

  32. Shan G, Zhong M, Wang S, Li Y, Liu Y (2008) J Colloid Interface Sci 326:392–395

    Article  Google Scholar 

  33. Ramqvist L, Hamrin K, Johansson G, Fahlman A, Nordling C (1969) J Phys Chem Solids 30:1835–1847

    Article  Google Scholar 

  34. Pan H, Yi JB, Shen L, Wu RQ, Yang JH, Lin JY, Feng YP, Ding J, Van LH, Yin JH (2007) Phys Rev Lett 99:127201–127204

    Article  Google Scholar 

  35. Lin Y, Hsu Y, Chen Y, Chen L, Chend S, Chen K (2012) Nanoscale 4:6515–6519

    Article  Google Scholar 

  36. Mathur RB, Bahl OP, Sivaram P (1992) Curr Sci 62:662–669

    Google Scholar 

  37. Morgan S, Chen S, Zhang Q, Li P, Yuan C (2008) Funct Polym 68:891–898

    Article  Google Scholar 

  38. Zhang L, Hsieh YL (2006) Nanotechnology 17:4416–4423

    Article  Google Scholar 

  39. Li JY, Dai H, Li Q, Zhong XH, Ma XF, Meng J, Cao XQ (2006) Mater Sci Eng, B 133:209–212

    Article  Google Scholar 

  40. Fujihara S, Maeda T, Ohgi H, Hosono E, Imai H, Kim SH (2004) Langmuir 20:6476–6481

    Article  Google Scholar 

  41. Gupta RK, Ghosh K, Kahol PK (2009) Physica E 41:617–620

    Article  Google Scholar 

  42. Zhao L, Chen X, Wang X, Zhang Y, Wei W, Sun Y, Antonietti M, Titirici MM (2010) Adv Mater 22:3317–3321

    Article  Google Scholar 

  43. Turchi C, Ollis D (1990) J Catal 122:178–192

    Article  Google Scholar 

  44. Lee M, Park S, Lee G, Ju C, Hong S (2005) Catal Today 101:283–290

    Article  Google Scholar 

  45. Cho S, Jang JW, Lee JS, Lee KH (2010) CrystEngComm 12:3929–3935

    Article  Google Scholar 

Download references

Acknowledgments

The present work is supported financially by the National Natural Science Foundation of China (Nos. 51302063, 51402082), the Natural Science Foundation of Hebei Province (B2014402077), Program for the Top Young Talents of Higher Learning Institutions of Hebei (BJ2014018 and BJ2014016), and the Science and Technology Research and Development Projects of Handan City (1323109084-3 and 1423109059-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengcai Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, J., Guo, Z., Che, H. et al. Electrospinning of C-doped ZnO nanofibers with high visible-light photocatalytic activity. J Sol-Gel Sci Technol 78, 99–109 (2016). https://doi.org/10.1007/s10971-015-3925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3925-8

Keywords

Navigation