Skip to main content
Log in

Anti-reflection coatings with enhanced abrasion and scratch resistance properties

  • Original Paper: Sol-Gel and Hybrid Materials for Energy, Environment and Building Applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The development of multifunctional coatings plays a crucial role in the achievement of more competitive glasses for optical and solar application, among others. In this respect, coatings that provide high transmittance together with abrasion resistance could mean an added value to such glasses. Herein, we report design and preparation of novel multifunctional coatings that present anti-reflection (AR), scratch and abrasion resistance properties. This is achieved by a coating structure with a composite top layer comprising at least one type of metal oxide (ZrO2 or TiO2) or silane compound with low-refractive-index SiO2 layer. The above composite layer is applied onto a high refractive metal oxide layer, either titania or zirconia. The properties of the coatings were studied by different characterization techniques such as UV–visible–NIR spectrophotometer, FESEM, FIB, SEM–EDAX, haze and transmission meter, ellipsometer, pencil hardness tester, Taber Abrader and water contact angle measurement. The results indicate that the AR films produced by a bilayer system especially using a low refractive nanocomposite layer as a top layer and a high refractive layer as a bottom layer showed a high transmission in the visible range with comparatively better abrasion and scratch resistances. Moreover, the coatings developed on silicon wafer used as an absorber substrate for PV application exhibited an excellent low reflectance property, <2.5 % average reflection from 300 to 1500 nm which makes it applicable in both optical and photovoltaic systems with high mechanical stability.

Graphical Abstract

Composite bilayer anti-reflection coatings with enhanced abrasion and scratch resistance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nostell P, Roos A, Karlsson B (1999) Optical and mechanical properties of sol–gel antireflective films for solar energy applications. Thin Solid Films 351:170–175

    Article  Google Scholar 

  2. Hammaberg E, Roos A (2000) Antireflection treatment of low-emitting glazing for energy efficient windows with high visible transmittance. Thin Solid Films 442:222–226

    Article  Google Scholar 

  3. Chen D, Yan Y, Westenberg E, Niebauer D, Sakaitani N, Chaudhuri SR, Sato Y, Takamatsu M (2000) Development of anti-reflection (AR) coating on plastic panels for display applications. J Sol-Gel Sci Technol 19:77–82

    Article  Google Scholar 

  4. Morimoto T, Sanada Y, Tomonaga H (2001) Wet chemical functional coatings for automotive glasses and cathode ray tubes. Thins Solid Films 392:214–222

    Article  Google Scholar 

  5. Lien SY, Wu DS, Yeh WC, Liu JC (2006) Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Sol Energy Mater Sol Cells 90:2710–2719

    Article  Google Scholar 

  6. Chabas A, Lombardo T, Cachier H, Pertuisot MH, Oikonomou K, Falcone R, Verita M, Geotti-Bianchini F (2008) Behaviour of self-cleaning glass in urban atmosphere. Build Environ 43:2124–2131

    Article  Google Scholar 

  7. Prado R, Beobide G, Marcaide A, Goikoetxea J, Aranzabe A (2010) Development of multifunctional sol–gel coatings: anti-reflection coatings with enhanced self-cleaning capacity. Sol Energy Mater Sol Cells 94:1081–1088

    Article  Google Scholar 

  8. Sakthivel S, Righeira Carnegie M, Joshi SV (2012) Indian patent 1777/DEL/2012

  9. Bostrom T, Wackelgard E, Westin G (2003) Solution-chemical derived nickel–alumina coatings for thermal solar absorbers. Sol Energy 74:497–503

    Article  Google Scholar 

  10. Bostrom T, Wackelgard E, Westin G (2004) Anti-reflection coatings for solution-chemically derived nickel–alumina solar absorbers. Sol Energy Mater Sol Cells 8:183–191

    Article  Google Scholar 

  11. Nagel H, Metz A, Hezel R (2001) Porous SiO2 films prepared by remote plasma-enhanced chemical vapour deposition—a novel antireflection coating technology for photovoltaic modules. Sol Energy Mater Sol Cells 65:71–77

    Article  Google Scholar 

  12. Ritala M, Niinisto J (2009) Atomic layer deposition. In: Jones AC, Hitchman ML (eds) Chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, London, pp 158–206

    Google Scholar 

  13. Kesmez O, Camurlu HE, Burunkaya E, Arpac E (2009) Sol–gel preparation and characterization of anti-reflective and self-cleaning SiO2–TiO2 double-layer nanometric films. Sol Energy Mater Sol Cells 93:1833–1839

    Article  Google Scholar 

  14. Chen D (2001) Anti-reflection (AR) coatings made by sol–gel processes: a review. Sol Energy Mater Sol Cells 68:313–336

    Article  Google Scholar 

  15. Hinz P, Dislich H (1986) Anti-reflecting light-Scattering coatings via the sol–gel procedure. J Non-Cryst Solids 82:411–416

    Article  Google Scholar 

  16. Rouse JH, Ferguson GH (2003) Preparation of thin silica films with controlled thickness and tuneable refractive index. J Am Chem Soc 125:15529–15536

    Article  Google Scholar 

  17. Zhang X, Fujishima A, Jin M, Emeline AV, Murakami T (2006) Double-layered TiO2–SiO2 nanostructured films with self-cleaning and antireflective properties. J Phys Chem B 110:25148

    Google Scholar 

  18. Lee D, Rubner MF, Cohen RE (2006) All-nanoparticle thin-film coatings. Nano Lett 6:2305–2312

    Article  Google Scholar 

  19. Bautista MC, Morales A (2003) Silica antireflective films on glass produced by the sol–gel method. Sol Energy Mater Sol Cells 80:217–225

    Article  Google Scholar 

  20. Liu Z, Zhang X, Murakami T, Fujishima A (2008) Sol–gel SiO2/TiO2 bi-layer films with self-cleaning and antireflection properties. Sol Energy Mater Sol Cells 92:1434–1438

    Article  Google Scholar 

  21. Walheim S, Schaffer E, Mlynek J, Steiner U (1999) Nanophase-separated polymer films as high-performance antireflection coatings. Science 283:520–522

    Article  Google Scholar 

  22. Minoru H, Akiko Y, Hiroshi K (1988) Jpn. Patent 0247166

  23. Xu Y, Wu D, Sun YH, Li ZH, Dong BZ, Wu ZH (2005) Ammonia-catalyzed hydrolysis kinetics of mixture of tetraethoxysilane with methyltriethoxysilane by 29Si NMR. J Non-Cryst Solids 351:2403–2413

    Article  Google Scholar 

  24. Wu G, Wang J, Shen J, Yang T, Zhang Q, Zhou B, Deng Z, Fan B, Zhou D, Zhang F (2000) Novel route to control refractive index of sol–gel derived nano-porous silica films used as broadband antireflective coatings. Mater Sci Eng B 78:135–139

    Article  Google Scholar 

  25. Yoldas BE, O’Keefe TW (1979) Antireflective coatings applied from metal–organic derived liquid precursors. Appl Opt 18:3133–3138

    Article  Google Scholar 

  26. Menna P, DiFrancia G, LaFerrara V (1995) Porous silicon in solar cells: a review and a description of its application as an AR coating. Sol Energy Mater Sol Cells 37:13–24

    Article  Google Scholar 

  27. SanVicente G, Bayon R, German N, Morales A (2009) Long-term durability of sol–gel porous coatings for solar glass cover. Thin Solid Films 517:3157–3160

    Article  Google Scholar 

  28. ASTM D3363-00 (2000) Standard test method for film hardness by pencil test. ASTM International, West Conshohocken

    Google Scholar 

  29. Wang X, Shen J (2010) Sol–gel derived durable antireflective coating for solar glass. J Sol-Gel Sci Technol 53:322–327

    Article  Google Scholar 

  30. Li X, Shen J (2011) A scratch-resistant and hydrophobic broadband antireflective coating by sol–gel method. Thin Solid Films 519:6236–6240

    Article  Google Scholar 

  31. Chen CH, Li SY, Chiang AST, Wu AT, Sun YS (2011) Scratch resistant zeolite anti-reflective coating on glass for solar applications. Sol Energy Mater Sol Cells 95:1694–1700

    Article  Google Scholar 

  32. Xu L, Geng Z, He J, Zhou G (2014) Mechanically robust, thermally stable, broadband antireflective, and superhydrophobic thin films on glass substrates. ACS Appl Mater Interfaces 6:9029–9035

    Article  Google Scholar 

  33. Aytug T, Lupini AR, Jellison GE, Joshi PC, Ivanov IH, Liu T, Wang P, Menon R, Trejo RM, Curzio EL, Hunter SR, Simpson JT, Paranthamana MP, Christena DK (2015) Monolithic graded-refractive-index glass-based antireflective coatings: broadband/omnidirectional light harvesting and self-cleaning characteristics. J Mater Chem C 3:5440–5449

    Article  Google Scholar 

  34. Xia B, Zhang Q, Yao S, Zhang Y, Xiao B, Jiang B (2014) Sol–gel silica antireflective coating with enhanced abrasion-resistance using polypropylene glycol as porogen. J Sol-Gel Sci Technol 71:291–296

    Article  Google Scholar 

  35. Cai C, Yang X, Wang Z, Dong H, Ma H, Zhao N, Xu J (2015) Robust anti-reflective silica nanocoatings: abrasion resistance enhanced via capillary condensation of APTES. J Mater Chem C 3:4254–4259

    Article  Google Scholar 

  36. Hwang DK, Moon JH, Shul YG, Jung KT, Kim DH, Lee DW (2003) Scratch resistant and transparent UV-protective coating on polycarbonate. J Sol-Gel Sci Technol 26:783–787

    Article  Google Scholar 

  37. Gilberts J, Tinnemans AHA, Hogerheide MP, Koster TPM (1998) UV curable hard transparent hybrid coating materials on polycarbonate prepared by the sol–gel method. J Sol-Gel Sci Technol 11:153–159

    Article  Google Scholar 

  38. Rahman P, Vejayakumaran CS, Sipaut J, Ismail CK (2008) Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol–gel process. Ceram Int 34:2059–2066

    Article  Google Scholar 

  39. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis fundamentals and applications. BKC Inc, Arvada

    Google Scholar 

  40. Mills A, Lepre A, Elliott N, Bhopal S, Parkin IP, O’Neil SA (2003) Thick titanium dioxide films for semiconductor photocatalysis. J Photochem Photobiol A 160:185–194

    Article  Google Scholar 

  41. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432

    Article  Google Scholar 

  42. Fujishima A, Kohayakawa K, Honda K (1975) Discussion of hydrogen production under sunlight with an electrochemical photocell. J Electrochem Soc 122:1487–1489

    Article  Google Scholar 

  43. Tryk DA, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–3276

    Article  Google Scholar 

  44. Sakthivel S, Kisch H (2003) Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. ChemPhysChem 4:487–490

    Article  Google Scholar 

  45. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911

    Article  Google Scholar 

  46. Veith M, Peter O, Jilavi M, Sakthivel S (2011, 2012) DE 102009035797.1, WO 012214, US 0125234 and EP 2460035

  47. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Dr. G. Sundararajan, Director and Dr. S.V. Joshi, Additional Director of ARCI for providing all the necessary facilities and their great encouragement for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sakthivel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Righeira Carnegie, M., Sherine, A., Sivagami, D. et al. Anti-reflection coatings with enhanced abrasion and scratch resistance properties. J Sol-Gel Sci Technol 78, 176–186 (2016). https://doi.org/10.1007/s10971-015-3924-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3924-9

Keywords

Navigation