Journal of Sol-Gel Science and Technology

, Volume 78, Issue 1, pp 82–90 | Cite as

Preparation of high-concentration colloidal solution of silica-coated gold nanoparticles and their application to X-ray imaging

  • Yoshio Kobayashi
  • Kyosuke Shibuya
  • Masayuki Tokunaga
  • Yohsuke Kubota
  • Takahiro Oikawa
  • Kohsuke Gonda
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Abstract

This study proposes a method for preparing high-concentration silica-coated Au (Au/SiO2) nanoparticles in colloidal solution from 1.5 × 10−3 M hydrogen tetrachloroaurate (III) trihydrate as the Au source and 1.0 × 10−2 M sodium citrate as the reducing reagent. The colloidal solution is applied to X-ray computed tomography (CT) imaging of mouse tissue. The Au nanoparticles in the colloidal solution had a diameter of 18.9 nm, and the Au concentration reached 1.5 × 10−3 M. The Au nanoparticles were silica-coated by modifying their surfaces with (3-aminopropyl)trimethoxysilane (APMS), then depositing silica nuclei generated by a sol–gel reaction of tetraethyl orthosilicate (TEOS) in water/ethanol initiated with sodium hydroxide (NaOH) on the surface modified with APMS. A colloidal solution of Au/SiO2 core–shell particles (silica shell thickness = 19.7 nm) was formed in a final as-prepared solution of 2.7 × 10−4 M Au, 2.0 × 10−5 M APMS, 24 M H2O, 1.9 × 10−3 M NaOH, and 4.1 × 10−3 M TEOS. The Au in the as-prepared colloidal solution was further concentrated to 0.27 M by salting-out and centrifugation. The CT value of the concentrated Au/SiO2 colloidal solution was 2.52 × 103 Hounsfield units, double that of a commercial X-ray contrast agent with the same I concentration as the Au concentration. When injected into mouse tissue, the Au/SiO2 colloidal solution demonstrated good imaging capability.

Graphical Abstract

Keywords

Au Silica Core–shell Nanoparticle X-ray contrast agent 

References

  1. 1.
    Andjelic S, Vasiljevic Z (2010) Myocardial infarction as an anaphylactoid reaction to iodine contrast. Rev Fr Allergol 50:579–583CrossRefGoogle Scholar
  2. 2.
    Nadolski GJ, Stavropoulos SW (2013) Contrast alternatives for iodinated contrast allergy and renal dysfunction: options and limitations. J Vasc Surg 57:593–598CrossRefGoogle Scholar
  3. 3.
    Ares JA, Amatriain GR, Iglesias CN, Forner MB, Gay MLF (2014) Contrast agents used in interventional pain: management, complications, and troubleshooting. Tech Reg Anesth Pain Manag 18:65–75CrossRefGoogle Scholar
  4. 4.
    de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grüll H (2010) Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials 31:6537–6544CrossRefGoogle Scholar
  5. 5.
    Li X, Anton N, Zuber G, Vandamme T (2014) Contrast agents for preclinical targeted X-ray imaging. Adv Drug Deliv Rev 76:116–133CrossRefGoogle Scholar
  6. 6.
    Qia Z, Shi X (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 44:1–27CrossRefGoogle Scholar
  7. 7.
    Tu SJ, Yang PY, Hong JH, Lo CJ (2013) Quantitative dosimetric assessment for effect of gold nanoparticles as contrast media on radiotherapy planning. Radiat Phys Chem 88:14–20CrossRefGoogle Scholar
  8. 8.
    Cole LE, Vargo-Gogola T, Roeder RK (2014) Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications. Biomaterials 35:2312–2321CrossRefGoogle Scholar
  9. 9.
    Silvestri A, Polito L, Bellani G, Zambelli V, Jumde RP, Psaro R, Evangelisti C (2015) Gold nanoparticles obtained by aqueous digestive ripening: their application as X-ray contrast agents. J Colloid Interface Sci 439:28–33CrossRefGoogle Scholar
  10. 10.
    Song Y, Feng D, Li X (2013) Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nano dots on live cells Ćas well as green gram sprouts. Talanta 116:237–244CrossRefGoogle Scholar
  11. 11.
    Hadrup N, Sharma AK, Poulsen M, Nielsen E (2015) Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles—a review. Regul Toxicol Pharm 72:216–221CrossRefGoogle Scholar
  12. 12.
    Austin LA, Ahmad S, Kang B, Rommel KR, Mahmoud M, Peek ME, El-Sayed MA (2015) Cytotoxic effects of cytoplasmic-targeted and nuclear-targeted gold and silver nanoparticles in HSC-3 cells—a mechanistic study. Toxicol In Vitro 29:694–705CrossRefGoogle Scholar
  13. 13.
    Luty-Błochoa M, Fitzner K, Hessel V, Löb P, Maskos M, Metzke D, Pacławski K, Wojnicki M (2011) Synthesis of gold nanoparticles in an interdigital micromixer using ascorbic acid and sodium borohydride as reducers. Chem Eng J 171:279–290CrossRefGoogle Scholar
  14. 14.
    Namazi H, Fard AMP (2011) Preparation of gold nanoparticles in the presence of citric acid-based dendrimers containing periphery hydroxyl groups. Mater Chem Phys 129:189–194CrossRefGoogle Scholar
  15. 15.
    Khan Z, Singh T, Hussain JI, Hashmi AA (2013) Au(III)-CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles. Colloid Surf B 104:11–17CrossRefGoogle Scholar
  16. 16.
    Njagi JI, Goia DV (2014) Nitrilotriacetic acid: a novel reducing agent for synthesizing colloidal gold. J Colloid Interface Sci 421:27–32CrossRefGoogle Scholar
  17. 17.
    Song G, Xu C, Li B (2015) Visual chiral recognition of mandelic acid enantiomers with l-tartaric acid-capped gold nanoparticles as colorimetric probes. Sensor Actuat B 215:504–509CrossRefGoogle Scholar
  18. 18.
    Wu Z, Liang J, Ji X, Yang W (2011) Preparation of uniform Au@SiO2 particles by direct silica coating on citrate-capped Au nanoparticles. Colloid Surf A 392:220–224CrossRefGoogle Scholar
  19. 19.
    Törngren B, Akitsu K, Ylinen A, Sandén S, Jiang H, Ruokolainen J, Komatsu M, Hamamura T, Nakazaki J, Kubo T, Segawa H, Österbacka R, Smått JH (2014) Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications. J Colloid Interface Sci 427:54–61CrossRefGoogle Scholar
  20. 20.
    Pak J, Yoo H (2014) Synthesis and catalytic performance of multiple gold nanodots core-mesoporous silica shell nanoparticles. Micropor Mesopor Mater 185:107–112CrossRefGoogle Scholar
  21. 21.
    Raj S, Adilbish G, Lee JW, Majhi SM, Chon BS, Lee CH, Jeon SH, Yu YT (2014) Fabrication of Au@SiO2 core-shell nanoparticles on conducting glass substrate by pulse electrophoresis deposition. Ceram Int 40:13621–13626CrossRefGoogle Scholar
  22. 22.
    Zhang TT, Zhao HM, Fan XF, Chen S, Quan X (2015) Electrochemiluminescence immunosensor for highly sensitive detection of 8-hydroxy-2′-deoxyguanosine based on carbon quantum dot coated Au/SiO2 core-shell nanoparticles. Talanta 131:379–385CrossRefGoogle Scholar
  23. 23.
    Yoo SM, Rawal SB, Lee JE, Kim J, Ryu HY, Park DW, Lee WI (2015) Size-dependence of plasmonic Au nanoparticles in photocatalytic behavior of Au/TiO2 and Au@SiO2/TiO2. Appl Catal A 499:47–54CrossRefGoogle Scholar
  24. 24.
    Zhang T, Zhao H, Quan X, Chen S (2015) An electrochemiluminescence sensing for DNA glycosylase assay with enhanced host-guest recognition technique based on a-cyclodextrin functionalized gold/silica cell-shell nanoparticles. Electrochim Acta 157:54–61CrossRefGoogle Scholar
  25. 25.
    Xu X, Kyaw AKK, Peng B, Xiong Q, Demir HV, Wang Y, Wong TKS, Sun XW (2015) Influence of gold-silica nanoparticles on the performance of small-molecule bulk heterojunction solar cells. Org Electron 22:20–28CrossRefGoogle Scholar
  26. 26.
    Kobayashi Y, Inose H, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A (2011) Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties. J Colloid Interface Sci 358:329–333CrossRefGoogle Scholar
  27. 27.
    Kobayashi Y, Inose H, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A (2012) Synthesis of Au-silica core-shell particles by a sol–gel process. Surf Eng 28:129–133CrossRefGoogle Scholar
  28. 28.
    Kobayashi Y, Inose H, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2013) X-ray imaging technique using colloid solution of Au/silica core-shell nanoparticles. J Nanostruct Chem 3:62CrossRefGoogle Scholar
  29. 29.
    Kobayashi Y, Inose H, Nagasu R, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2013) X-ray imaging technique using colloid solution of Au/silica/poly(ethylene glycol) nanoparticles. Mater Res Innov 17:507–514CrossRefGoogle Scholar
  30. 30.
    Kobayashi Y, Nagasu R, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2015) Preparation of Au/silica/poly(ethylene glycol) nanoparticle colloid solution and its use in X-ray imaging process. Nanocomposites 2:83–88CrossRefGoogle Scholar
  31. 31.
    Kobayashi Y, Nagasu R, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2014) Synthesis of colloid solution of silica-coated gold nanoparticles and its X-ray imaging property. J Nanoparticle Res 16:2551CrossRefGoogle Scholar
  32. 32.
    Dickson D, Liu G, Li C, Tachiev G, Cai Y (2012) Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci Total Environ 419:170–177CrossRefGoogle Scholar
  33. 33.
    Li Z, Li J, Xu R, Hong Z, Liu Z (2015) Streaming potential method for characterizing the overlapping of diffuse layers of the electrical double layers between oppositely charged particles. Colloids Surf A 478:22–29CrossRefGoogle Scholar
  34. 34.
    Dimic-Misic K, Hummel M, Paltakari J, Sixta H, Maloney T, Gane P (2015) From colloidal spheres to nanofibrils: extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression. J Colloid Interface Sci 446:31–43CrossRefGoogle Scholar
  35. 35.
    Gabudean AM, Biro D, Astilean S (2011) Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods. J Mol Struct 993:420–424CrossRefGoogle Scholar
  36. 36.
    Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706:8–24CrossRefGoogle Scholar
  37. 37.
    Hormozi-Nezhad MR, Robatjazi H, Jalali-Heravi M (2013) Thorough tuning of the aspect ratio of gold nanorods using response surface methodology. Anal Chim Acta 779:14–21CrossRefGoogle Scholar
  38. 38.
    Afrooz ARMN, Sivalapalan ST, Murphy CJ, Hussain SM, Schlager JJ, Saleh NB (2013) Spheres versus rods: the shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere 91:93–98CrossRefGoogle Scholar
  39. 39.
    Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuat B 195:332–351CrossRefGoogle Scholar
  40. 40.
    Zhang A, Tu Y, Qin S, Li Y, Zhou J, Chen N, Lu Q, Zhang B (2012) Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging. J Colloid Interface Sci 372:239–244CrossRefGoogle Scholar
  41. 41.
    Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33:1107–1119CrossRefGoogle Scholar
  42. 42.
    Díaz-López R, Tsapis N, Santin M, Bridal SL, Nicolas V, Jaillard D, Libong D, Chaminade P, Marsaud V, Vauthier C, Fattal E (2010) The performance of PEGylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent. Biomaterials 31:1723–1731CrossRefGoogle Scholar
  43. 43.
    Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670:372–383CrossRefGoogle Scholar
  44. 44.
    Yoneki N, Takami T, Ito T, Anzai R, Fukuda K, Kinoshita K, Sonotaki S, Murakami Y (2015) One-pot facile preparation of PEG-modified PLGA nanoparticles: effects of PEG and PLGA on release properties of the particles. Colloids Surf A 469:66–72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yoshio Kobayashi
    • 1
  • Kyosuke Shibuya
    • 1
  • Masayuki Tokunaga
    • 2
  • Yohsuke Kubota
    • 2
  • Takahiro Oikawa
    • 2
  • Kohsuke Gonda
    • 2
  1. 1.Department of Biomolecular Functional Engineering, College of EngineeringIbaraki UniversityHitachiJapan
  2. 2.Graduate School of MedicineTohoku UniversitySendaiJapan

Personalised recommendations