Skip to main content
Log in

Thermoluminescence properties of ZnO nanoparticles in the temperature range 10–300 K

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Low-temperature thermoluminescence (TL) properties of ZnO nanoparticles grown by sol–gel method were investigated in the 10–300 K temperature range. TL glow curve obtained at 0.2 K/s constant heating rate exhibited one broad peak around 83 K. The observed peak was analyzed using curve fitting method to determine the activation energies of trapping center(s) responsible for glow curve. Analyses resulted in the presence of three peaks at 55, 85 and 118 K temperatures with activation energies of 12, 30 and 45 meV, respectively. Thermal cleaning process was applied to separate overlapped peaks and get an opportunity to increase the reliability of results obtained from curve fitting method. Heating rate dependence of glow curve was also studied for rates between 0.2 and 0.7 K/s. The shift of the peak maximum temperatures to higher values and decrease in peak height with heating rate were observed. Moreover, X-ray diffraction and scanning electron microscopy were used for structural characterization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kong XY, Wang ZL (2003) Nano Lett 3:1625–1631

    Article  Google Scholar 

  2. Jin BJ, Bae SH, Lee SY, Im S (2000) Mater Sci Eng B 71:301–305

    Article  Google Scholar 

  3. Studeniken SA, Golego N, Cocivera M (1998) J Appl Phys 83:2104–2111

    Article  Google Scholar 

  4. Azam A, Ahmed F, Arshi N, Chaman M, Naqvi AH (2010) J Alloy Compd 496:399–402

    Article  Google Scholar 

  5. Znaidi L (2010) Mater Sci Eng, B 174:18–30

    Article  Google Scholar 

  6. Sahal M, Hartiti B, Ridah A, Mollar M, Mari B (2008) Microelectronics J 39:1425–1428

    Article  Google Scholar 

  7. Pal U, Melendrez R, Chernov V, Barboza-Flores M (2006) Appl Phys Lett 89:183118

    Article  Google Scholar 

  8. Pal PP, Manam J (2013) Mater Sci Eng, B 178:400–408

    Article  Google Scholar 

  9. DeMuer D, Maenhout W (1968) Physica 39:123–132

    Article  Google Scholar 

  10. Seitz MA, Pinter WF, Hirthe WM (1971) Mater Res Bull 6:275–282

    Article  Google Scholar 

  11. Wang Y, Yang B, Can N, Townsend PD (2011) J Appl Phys 109:053508

    Article  Google Scholar 

  12. Borbon-Nunez HA, Cruz-Vazquez C, Bernal R, Kitis G, Furetta C, Castano VM (2014) Optic Mater 37:398–403

    Article  Google Scholar 

  13. Cruz-Vázquez C, Borbón-Nuñez HA, Bernal R, Gaspar-Armenta JA, Castaño VM (2014) Radiat Eff Defects Solids 169(5):380–387

    Article  Google Scholar 

  14. Partha PP, Manam J (2013) Radiat Phys Chem 88:7–13

    Article  Google Scholar 

  15. Wang ZL (2004) J Phys-Condens Mat 16:R829–R858

    Article  Google Scholar 

  16. Ozgur U, Alivov Ya I, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) J Appl Phys 98:041301

    Article  Google Scholar 

  17. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, New Jersey

    Google Scholar 

  18. Chen R, McKeever SWS (1997) Theory of thermoluminescence and related phenomena. World Scientific, Singapore

    Book  Google Scholar 

  19. Yuksek NS, Gasanly NM, Ozkan H (2003) Semicond Sci Technol 18:834–838

    Article  Google Scholar 

  20. Fonoberov VA, Alim KA, Balandin AA (2006) Phys Rev B 73:165317

    Article  Google Scholar 

  21. Kramer B (ed) (2005) Adv Solid State Phys 45:263–274

  22. Look DC, Reynolds DC, Sizelove JR, Lones RL, Litton CW, Cantwell G, Harsch WC (1998) Sol State Commun 105:399–401

    Article  Google Scholar 

  23. Look DC, Hemsky JW (1999) Phys Rev Lett 82:2552–2555

    Article  Google Scholar 

  24. Correcher V, Gomez-Ros JM, Garcia-Guinea J, Lis M, Sanchez-Munoz L (2008) Radiat Meas 43:269–272

    Article  Google Scholar 

  25. Kafadar VE, Yazici AN, Yildirim RG (2009) J Lumin 129:710–714

    Article  Google Scholar 

  26. Macedo ZS, Valerio MEG, de Lima JF (1999) J Phys Chem Solids 60:1973–1981

    Article  Google Scholar 

  27. Kitis G, Furetta C, Prokic M, Prokic V (2000) J Phys D Appl Phys 33:1252–1262

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technological Research Council of Turkey, 1001 Scientific and Technological Research Projects, No: 110T345.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Isik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik, M., Yildirim, T. & Gasanly, N.M. Thermoluminescence properties of ZnO nanoparticles in the temperature range 10–300 K. J Sol-Gel Sci Technol 78, 76–81 (2016). https://doi.org/10.1007/s10971-015-3919-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3919-6

Keywords

Navigation