Skip to main content
Log in

Study of the growth of hydrophilic iron oxide nanoparticles obtained via the non-aqueous sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The growth process of hydrophilic iron oxide nanoparticles synthesized via the non-aqueous sol–gel method using TEG as high-boiling solvent has been characterized. A model of the growth process is presented, based on a combination of analytical methods, especially XRD, SAXS and TGA. In contrast to previously studied particles synthesized in benzyl alcohol, which grow via nucleation, particles synthesized in TEG grow via a sol–gel-like process. In a first step, an amorphous network is formed, and subsequently, during the compaction of the network, crystalline particles are obtained. The influence of the structural properties on the magnetic behavior was identified by combining various spectroscopic methods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Babiuch K, Wyrwa R, Wagner K, Seemann T, Hoeppener S, Becer CR, Linke R, Gottschaldt M, Weisser J, Schnabelrauch M, Schubert US (2011) Functionalized, biocompatible coating for superparamagnetic nanoparticles by controlled polymerization of a thioglycosidic monomer. Biomacromolecules 12(3):681–691. doi:10.1021/bm101325w

    Article  Google Scholar 

  2. Camponeschi E, Walker J, Garmestani H, Tannenbaum R (2008) Surfactant effects on the particle size and formation of iron oxides via a sol-gel process. In: ACS symposium series, vol 996. pp 124–138. doi:10.1021/bk-2008-0996.ch010

  3. Cerff M, Scholz A, Franzreb M, Batalha I, Roque A, Posten C (2013) In situ magnetic separation of antibody fragments from Escherichia coli in complex media. BMC Biotechnol 13(1):1–16. doi:10.1186/1472-6750-13-44

    Article  Google Scholar 

  4. Cha J, Lee JS, Yoon SJ, Kim YK, Lee JK (2013) Solid-state phase transformation mechanism for formation of magnetic multi-granule nanoclusters. RSC Adv 3(11):3631–3637. doi:10.1039/C3RA21639J

    Article  Google Scholar 

  5. Cheema T, Lichtner A, Weichert C, Böl M, Garnweitner G (2012) Fabrication of transparent polymer-matrix nanocomposites with enhanced mechanical properties from chemically modified ZrO2 nanoparticles. J Mater Sci 47(6):2665–2674. doi:10.1007/s10853-011-6092-5

    Article  Google Scholar 

  6. Cui H, Liu Y, Ren W (2013) Structure switch between \(\alpha \text{-Fe}_{2}\text{O}_{3}\), \(\gamma \text{-Fe}_{2}\text{O}_{3}\) and \(\text{Fe}_{3}\text{O}_{4}\) during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv Powder Technol 24(1):93–97. doi:10.1016/j.apt.2012.03.001

    Article  Google Scholar 

  7. Espinosa D, Carlsson LB, Neto AMF, Alves S (2013) Influence of nanoparticle size on the nonlinear optical properties of magnetite ferrofluids. Phys Rev E 88:032,302. doi:10.1103/PhysRevE.88.032302

    Article  Google Scholar 

  8. Franzreb M, Siemann-Herzberg M, Hobley T, Thomas OT (2006) Protein purification using magnetic adsorbent particles. Appl Microbiol Biotechnol 70(5):505–516. doi:10.1007/s00253-006-0344-3

    Article  Google Scholar 

  9. Grabs IM, Bradtmöller C, Menzel D, Garnweitner G (2012) Formation mechanisms of iron oxide nanoparticles in different nonaqueous media. Cryst Growth Des 12(3):1469–1475. doi:10.1021/cg201563h

    Article  Google Scholar 

  10. Grosvenor AP, Kobe BA, McIntyre NS (2004) Studies of the oxidation of iron by air after being exposed to water vapour using angle-resolved X-ray photoelectron spectroscopy and QUASES. Surf Interface Anal 36(13):1637–1641. doi:10.1002/sia.1992

    Article  Google Scholar 

  11. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  12. Gupta RP, Sen SK (1974) Calculation of multiplet structure of core p-vacancy levels. Phys Rev B 10(1):71–77. doi:10.1103/PhysRevB.10.71 PRB

    Article  Google Scholar 

  13. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview, vol 186. Academic Press, London

    Google Scholar 

  14. Hansen MF, Koch CB, Mørup S (2000) Magnetic dynamics of weakly and strongly interacting hematite nanoparticles. Phys Rev B 62:1124–1135. doi:10.1103/PhysRevB.62.1124

    Article  Google Scholar 

  15. Josephson L (2006) Magnetic nanoparticles for MR imaging, chap. 8. Springer, Berlin

    Google Scholar 

  16. Kraken M, Masthoff IC, Borchers A, Litterst FJ, Garnweitner G (2014) Formation of magnetic nanoparticles studied during the initial synthesis stage. Hyperfine Interact 224(1–3):57–63. doi:10.1007/s10751-013-0767-z

    Article  Google Scholar 

  17. Krishnan S, Diagaradjane P, Cho SH (2010) Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperth 26(8):775–789. doi:10.3109/02656736.2010.485593

    Article  Google Scholar 

  18. Masthoff IC, David F, Wittmann C, Garnweitner G (2013) Functionalization of magnetic nanoparticles with high-binding capacity for affinity separation of therapeutic proteins. J Nanopart Res 16(1):1–10. doi:10.1007/s11051-013-2164-6

    Google Scholar 

  19. Masthoff IC, Kraken M, Mauch D, Menzel D, Munevar J, Baggio Saitovitch E, Litterst FJ, Garnweitner G (2014) Study of the growth process of magnetic nanoparticles obtained via the non-aqueous sol-gel method. J Mater Sci 49(14):4705–4714. doi:10.1007/s10853-014-8160-0

    Article  Google Scholar 

  20. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49(11):1521–1529. doi:10.1021/ac50019a016

    Article  Google Scholar 

  21. Minati L, Micheli V, Rossi B, Migliaresi C, Dalbosco L, Bao G, Hou S, Speranza G (2011) Application of factor analysis to XPS valence band of superparamagnetic iron oxide nanoparticles. Appl Surf Sci 257(24):10,863–10,868. doi:10.1016/j.apsusc.2011.07.123

    Article  Google Scholar 

  22. Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem A Eur J 12(28):7282–7302. doi:10.1002/chem.200600313

    Article  Google Scholar 

  23. Pinna N, Garnweitner G, Antonietti M, Niederberger M (2005) A general nonaqueous route to binary metal oxide nanocrystals involving a C–C bond cleavage. J Am Chem Soc 127(15):5608–5612. doi:10.1021/ja042323r

    Article  Google Scholar 

  24. Reena MAP, Anantharaman MR (2013) Superparamagnetic iron oxide nanoparticles based aqueous ferrofluids for biomedical applications. In: Orsucci FF, Sala N (ed) Ferrofluids. Nova Science Publishers, Hauppauge

  25. Walker JD, Tannenbaum R (2006) Characterization of the sol-gel formation of iron(III) oxide/hydroxide nanonetworks from weak base molecules. Chem Mater 18(20):4793–4801. doi:10.1021/cm0609101

    Article  Google Scholar 

  26. Wang YXJ (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1(1):35–40. doi:10.3978/j.issn.2223-4292.2011.08.03

    Google Scholar 

  27. Zhang XQ, Gong SW, Zhang Y, Yang T, Wang CY, Gu N (2010) Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem 20:5110–5116. doi:10.1039/C0JM00174K

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. G. Goya and G. Antorrena Pardo and A. Ibarra Galián, University of Zaragoza, Spain, for the XPS and TEM analysis. Helpful discussions with Prof. E. Baggio Saitovitch and Dr. J. Munevar are acknowledged. Financial support from SynFoBiA (Center of Pharmaceutical Engineering, PVZ) is gratefully acknowledged. Part of this work has been supported by PROBRAL (DAAD-CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Garnweitner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5793 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masthoff, IC., Kraken, M., Menzel, D. et al. Study of the growth of hydrophilic iron oxide nanoparticles obtained via the non-aqueous sol–gel method. J Sol-Gel Sci Technol 77, 553–564 (2016). https://doi.org/10.1007/s10971-015-3883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3883-1

Keywords

Navigation