Skip to main content
Log in

Effect of fuel-to-oxidant ratio on phase constituents, microstructure and magnetic properties of NiFe2O4-based composite nanopowder synthesized by sol–gel auto-combustion method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this research, NiFe2O4-based composite nanopowder with 0.8, 1, 1.35, 1.7 fuel-to-oxidant (F/O) ratios was synthesized by sol–gel auto-combustion method. Changes in phase constituents, microstructure and magnetic properties due to changes in F/O ratios were evaluated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM) techniques. XRD and Raman spectroscopy results show the presence of NiFe2O4, FeNi3, α-Fe2O3 and NiO phases. The amount of nickel ferrite was increased, while the amount of FeNi3 was decreased with increasing F/O ratio from 0.8 to 1.35. Mean crystallite sizes of the samples are in the range of 40–46 nm. FESEM studies depicted the formation of NiFe2O4 particles coexisting with FeNi3 phase. Changes in F/O ratios alter the saturation magnetization values from 37 to 60 emu/g as a result of changes in FeNi3 and NiFe2O4 amounts. Coercivity values are in the range of 135–177Oe.

Graphical Abstract

In this research nano-sized NiFe2O4 powders with 0.8, 1, 1.35, 1.7 Fuel to Oxidant (F/O) ratios were synthesized by sol–gel auto-combustion method. FESEM studies depicted the formation of NiFe2O4 particles coexisting with FeNi3 phase. Changes in F/O ratios alter the saturation magnetization values from 37 to 60emu/g as a result of changes in FeNi3 and NiFe2O4 amounts. Coercivity values are in the range of 135 to 177Oe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2011) Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater Res Bull 46:2204–2207

    Article  Google Scholar 

  2. Salavati-Niasari M, Davar F, Mahmoudi T (2009) Simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron 28:1455–1458

    Article  Google Scholar 

  3. Liu X, Fu S, Huang C (2004) Magnetic properties of Ni ferrite nanocrystals dispersed in the silica matrix by sol–gel technique. J Magn Magn Mater 281:234–239

    Article  Google Scholar 

  4. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2012) Synthesis, studies and growth mechanism of ferromagnetic NiFe2O4 nanosheet. Appl Surf Sci 258:6648–6652

    Article  Google Scholar 

  5. George M, John AM, Nair SS, Joy PA, Anantharaman MR (2006) Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J Magn Magn Mater 302:190–195

    Article  Google Scholar 

  6. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2011) Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater Res Bull 46:2208–2211

    Article  Google Scholar 

  7. Komarneni S, D’Arrigo MC, Leonelli C, Pellacani GC, Katsuki H (1998) Microwave-hydrothermal synthesis of nanophase ferrites. J Am Ceram Soc 81:3041–3043

    Article  Google Scholar 

  8. Maaz K, Karim S, Mumtaz A, Hasanain SK, Liu J, Duan JL (2009) Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J Magn Magn Mater 321:1838–1842

    Article  Google Scholar 

  9. Hirai T, Kobayyashi J, Komasawa I (1999) Preparation of acicular ferrite fine particles using an emulsion liquid membrane system. Langmuir 15:6291–6298

    Article  Google Scholar 

  10. Liu JH, Wang L, Li FS (2005) Magnetic properties and Mössbauer studies of nanosized NiFe2O4 particles. J Mater Sci 40:2573–2575

    Article  Google Scholar 

  11. Liu X, Fu S, Huang C (2004) Magnetic properties of Ni ferrite nanocrystals dispersed in the silica matrix by sol–gel technique. J Magn Magn Mater 281:234–239

    Article  Google Scholar 

  12. Azadmanjiri J, Seyyed Ebrahimi SA, Salehani HK (2007) Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion method. Ceram Int 33:1623–1625

    Article  Google Scholar 

  13. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2012) A simple wet chemical route to synthesize ferromagnetic nickel ferrite nanoparticles in the presence of oleic acid as a surfactant. J Mater Sci: Mater Electron 23:1041–1044

    Google Scholar 

  14. Barati MR, Seyyed Ebrahimi SA, Badiei A (2008) The role of surfactant in synthesis of magnetic nanocrystalline powder of NiFe2O4 by sol–gel auto-combustion method. J Non-Cryst Solids 354:5184–5185

    Article  Google Scholar 

  15. Zhu J, Xiao D, Li J, Yang X, Wu Y (2006) Characterization of FeNi3 alloy in Fe–Ni–O system synthesized by citric acid combustion method. Scripta Mater 54:109–113

    Article  Google Scholar 

  16. Pillai V, Shah DO (1996) Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J Magn Magn Mater 163:243–248

    Article  Google Scholar 

  17. Jain SR, Adiga KC, PaiVernecker VR (1981) A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame 40:71–79

    Article  Google Scholar 

  18. Franco A Jr, Alves TEP, deO Lima EC, Nunes Eda S, Zapf V (2009) Enhanced magnetization of nanoparticles of MgxFe(3−x)O4(0.5 ≤ x ≤ 1.5) synthesized by combustion reaction. Appl Phys A 94:131–137

    Article  Google Scholar 

  19. Marinca TF, Neamtu BV, Popa F, Tarta VF, Pascuta P, Takacs AF, Chicinas I (2013) Synthesis and characterization of the NiFe2O4/Ni3Fe nanocomposite powder and compacts obtained by mechanical milling and spark plasma sintering. Appl Surf Sci 285P:2–9

    Article  Google Scholar 

  20. Tarta VF, Marinca TF, Chicinas I, Popa F, Neamtu BV, Pascuta P, Takacs AF (2013) Study on stability of phases in ball milled ZnFe2O4/Fe composite during processing by spark plasma sintering. Mater Manuf Process 28:993–998

    Google Scholar 

  21. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71

    Article  Google Scholar 

  22. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesely Publishing Co, Boston

    Google Scholar 

  23. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Mater 1:22–31

    Article  Google Scholar 

  24. Patil KC, Aruna ST, Mimani T (2002) Combustion synthesis: an update. Curr Opin Solid State Mater Sci 6:507–512

    Article  Google Scholar 

  25. Junliang L, Wei Z, Cuijing G, Yanwei Z (2009) Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol–gel auto-combustion: effects of pH and the ratio of citric acid to metal ions (CA/M). J Alloys Compd 479:863–869

    Article  Google Scholar 

  26. Pradeep A, Priyadharsini P, Chandrasekaran G (2008) Production of single phase nano size NiFe2O4 particles using sol–gel auto combustion route by optimizing the preparation conditions. Mater Chem Phys 112:572–576

    Article  Google Scholar 

  27. Ge L, Zhou W, Ran R, Shao Z, Liu S (2008) Facile auto combustion synthesis of La0.6Sr0.4Co0.2Fe0.8O3 − δ (LSCF) perovskite via a modified complexing sol–gel process with NH4NO3 as combustion aid. J Alloys Compd 450:338–347

    Article  Google Scholar 

  28. Dietz RE, Parisot GI, Meixner AE (1971) Infrared absorption and Raman scattering by two-magnon processes in NiO. Phys Rev B 4:2302–2310

    Article  Google Scholar 

  29. de Paiva JAC, Grac MPF, Monteiro J, Macedo MA, Valente MA (2009) Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water. J Alloys Compd 485:637–641

    Article  Google Scholar 

  30. Zhou W, Shao Z, Jin W (2006) Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications. J Alloys Compd 426:368–374

    Article  Google Scholar 

  31. Mali A, Ataie A (2004) Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method. Ceram Int 30:1979–1983

    Article  Google Scholar 

  32. Lu X, Liang G, Zhang Y (2007) Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution. Mater Sci Eng B 139:124–127

    Article  Google Scholar 

  33. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2012) Structural, thermal, dielectric and magnetic properties of NiFe2O4 nanoleaf. J Alloys Compd 537:203–207

    Article  Google Scholar 

  34. Tong SY, Wu JM, Tung MJ, Ko WS, Huang YT, Wang YP (2012) Effect of Ni concentration on electromagnetic wave absorption of (Ni, Mn, Zn) Fe2O4/resin particulate composites. J Alloys Compd 525:143–148

    Article  Google Scholar 

  35. Frandsen C, Morup S (2003) Inter-particle interactions in composites of antiferromagnetic nanoparticles. J Magn Magn Mater 266:36–48

    Article  Google Scholar 

  36. Singh I, Bedi RK (2011) Surfactant-assisted synthesis, characterizations, and room temperature ammonia sensing mechanism of nanocrystalline CuO. Solid State Sci 13:2011–2018

    Article  Google Scholar 

  37. Frandsen C, Ostenfeld CW, Xu M, Jacobsen CS, Keller L, Lefmann K, Mørup S (2004) Interparticle interactions in composites of nanoparticles of ferrimagnetic γ-Fe2O3 and antiferromagnetic CoO, NiO materials. Phys Rev B 70:134416

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr S.M. Masoudpanah for providing some CIF files for calculations by MAUD software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mirkazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamolhoda, S., Mirkazemi, S.M., Benvidi, N. et al. Effect of fuel-to-oxidant ratio on phase constituents, microstructure and magnetic properties of NiFe2O4-based composite nanopowder synthesized by sol–gel auto-combustion method. J Sol-Gel Sci Technol 77, 534–541 (2016). https://doi.org/10.1007/s10971-015-3880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3880-4

Keywords

Navigation